
ÖZçelik H, Karasan D, Demir F*, Akça K * Department of Prosthodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey

Background and Aim

For long term success of implant-supported restorations, the physical/mechanical properties of the relationship in the implant-abutment (I-A) interface is crucial to prevent biological or mechanical complications or both. Accordingly, regardless of I-A connection type (i.e conical, butt (join)), material properties and their interaction under function is also important. This refers to matching/ tolerance of the implant and the abutment at fabrication and their behaviour to the micro-movements. A recent systematic study confirmed material differences at the I-A interface likely to lead to microleakage, and zirconium abutments with titanium implants are not suggested (1). Today, specifically narrow-diameter implants with improved mechanical properties by alloying titanium with zirconium is commonly used especially at the functional zone. This option even more complicates the mechanical behaviour at the I-A interface due to material differences. Although the I-A interface and the wear characteristics of Ti implants when coupled with Ti or Zr abutments have been presented earlier(2), the the stability of Titanium Zr implant with Zr- or Ti-abutment is unclear. The aim of this study was to explore the effect of Ti-Zr implant material on the interface between 1-piece zirconia and two different titanium abutments using scanning electron microscopy (SEM).

Methods and Materials

Study models representing residual alveolar bone were machined from Type IV aluminum. Three study models were prepared, one for the control samples before loading and two for the test samples after loading. Each model received three Ø 3.3X10mm bone level Ti-Zr implants (Roxolid®, Institut Straumann AG, Basel, Switzerland) (Fig.1). Then, one-piece zr- and ti-abutments and a ti-base abutment were separately torque tightened to the implants to 35Ncm manually using a ratchet (Fig.2). Following the digital impression with a laboratory scanner (iEOS scanner, Dentsply Sirona, Charlotte, NC), the experimental zirconium oxide copings were manufactured using CAD/CAM system for each abutment. Occlusal surfaces of the copings were modified to create axially lateral loading to the implant axis. Screw access holes were created on the crowns to facilitate the removal of the abutments after the cyclic loading. The copings were adhesively luted. The test group implant-abutment assemblies were subjected to cyclic loading of 30 N at 2 Hz for 500,000 cycles using a servohydraulic test system (MTS Landmark, MTS Testing Solutions) in a dry environment. (Fig.3) Following completion of fatigue testing, samples were removed from the aluminum block and longitudinally sectioned to expose mating implant and abutment surfaces. (Fig.4)

Results

Each I-A interface was inspected as pairs under an SEM (JSM-6400 Electron Microscope, JEOL Ltd) equipped with an x-ray microanalysis system and energy dispersive spectrometry for the detection of zirconium oxide wear debris (Spectro XFlash® 4030, Bruker). The control group showed wear characteristics of Ti implants when coupled with Ti or Zr abutments. All samples completed the fatigue test without any coping, abutment and implant fracture. All copings were recorded stable with zero mobility according to periotest values. I-A interfaces with 1-piece ti-abutment and 1-base abutments presented similar mechanical reactions. Wear areas, deformations, and scratches were apparent on both titanium abutment surfaces, whereas large coated areas were noticeable on the corresponding implant surfaces due to titanium transfer (tattooing). Both implant and abutment surfaces at 1-piece zr-abutment samples presented similar changes. Zr-abutment surfaces were almost lack of any deformation, whereas small wear areas and chipping were noted at the corresponding implant surfaces. The results of the control and test groups are shown in Table 1.

Table.1. Result of control and test group

<table>
<thead>
<tr>
<th>Test</th>
<th>Cervical region</th>
<th>Apical region</th>
<th>Cervical region</th>
<th>Apical region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>P+</td>
<td>P+</td>
<td>P+</td>
<td>P+</td>
</tr>
<tr>
<td>Test Group</td>
<td>P+</td>
<td>P+</td>
<td>P+</td>
<td>P+</td>
</tr>
</tbody>
</table>

As Ti-Zr implants connected with one-piece Zr abutment displayed favourable mechanical congruence, Ti implants alloyed with zirconia implants may be considered for cases where restorations are supported with one-piece Zr abutments.

References