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Influence of Aging and Surface Treatment on the 

Composite Bond Strength to Translucent 3Y-TZP Zirconia

Nawal M. Moqbela* / Majed Al-Akhalib* / Sebastian Willec / Matthias Kernd

Purpose: The purpose of this study was to assess the effect of aging and alumina-particle air abrasion at different 
pressures on the bond strength of two luting composites to a translucent 3Y-TZP zirconia. 

Materials and Methods: Half of the 192 disk-shaped zirconia specimens were aged in an autoclave (group A) for 20 h 
(134°C, 2 bar), and the other half was not aged (group N). For each group, a different surface treatment was applied: 
as-sintered (group SIN), alumina-particle air abrasion either at 1 bar (group 1B) or at 2.5 bar (group 2.5B). Disks were 
bonded to Plexiglas tubes filled with composite resin using a phosphate monomer-based luting composite (group SA) 
or with a separate phosphate monomer containing primer before using a phosphate–monomer-free luting composite 
(group V5). All specimens were subjected to tensile bond strength testing (TBS) before and after thermocycling. 

Results: There were no statistically significant differences caused by autoclave aging for the test groups before 
thermocycling, except for the A-SIN-SA group, where the TBS decreased significantly. The variation of the alumina-
particle air abrasion pressure showed no statistically significant effect, except in the N-1B-V5 group, where TBS 
was significantly lower than N-2.5B-V5. After thermocycling, the TBS of most groups decreased significantly. Speci-
mens of the primer group, which were abraded at 1 bar, showed a significant decrease in TBS in comparison with 
alumina-particle air abrasion at 2.5 bar.

Conclusion: Twenty hours of autoclave aging had almost no influence on the bond strength of the test groups. For 
the primer/resin bonding system, higher pressure during alumina-particle air abrasion might help obtain a higher 
and more durable bond strength to zirconia.
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In recent years, the demand for esthetic all-ceramic restor-
ations has increased, leading to the development of ce-

ramic materials with improved mechanical properties and 
good esthetics. These ceramics are widely used in clinical 
applications, such as for posts, fixed dental prostheses, 
implant abutments and even adhesive resin-bonded fixed 
dental prostheses.27 Tetragonal, partially stabilized zirconia, 
known as conventional zirconia, was developed two de-

cades ago, but its opacity is a problem, especially for anter-
ior restorations. The translucency of zirconia is strongly re-
lated to its microstructure and chemical composition.8 The 
first generation of zirconia (3Y-TZP) was based on the con-
ventional Y-TZP ceramic with increased sintering tempera-
ture and dwell time to produce a zirconia that still had high 
opacity but with good mechanical properties.48,50 The sec-
ond generation of zirconia, also called translucent 3Y-TZP, 
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consists of 3Y-TZP with a decreased grain size and amount 
of aluminum oxide. This small change in the material com-
position enhanced the light transmission and optical/es-
thetic properties while maintaining good long-term stability 
and high strength.49 The clinical outcome of this dental ma-
terial greatly depends on its adhesion to natural teeth, al-
loys, and other dental materials.35 

Minimally invasive esthetic dentistry requires the use of 
luting composite to bond a wide variety of indirect restor-
ations to tooth structure. Luting composites have better 
properties than conventional luting agents, including higher 
strength, lower wear, and improved esthetics.1,5,18,39 Adhe-
sive resins enhance the long-term survival of restored teeth 
through a strong adhesive bond between the dental restor-
ation and the tooth structures.23,54

The addition of the phosphate-ester monomer 10-methac-
ryloyloxydecyl dihydrogen phosphate (MDP) to the bonding 
agent (primer or adhesive resin) has been reported to pro-
duce a durable resin-to-zirconia bond, because chemical 
bonds are formed between MDP and zirconia9,29,59 and the 
wettability of the zirconia surface is increased.20 These find-
ings have been confirmed in clinical trials.45,53 Self-adhesive 
composite cements are expected to bond to zirconia in the 
same way as other phosphate-based adhesive materials.34 
MDP-based primers are available to promote the chemical 
adhesion of resin materials to the hydroxyl group present on 
the zirconia surface and to increase surface wettability.20,62 
Surface treatments have been developed that either replace 
classic methods with new surface roughening procedures or 
combine them with other methods such as laser treatments 
or surface modifications that induce chemical bonding be-
tween zirconia and luting composite.54 A strong and durable 

bond to dental zirconia can be achieved through adequate 
cleaning of the bonding surfaces, micromechanical rough-
ness created by alumina-particle air abrasion, or chemical 
activation using phosphate monomers such as MDP-based 
primers and/or luting composites.23,40,54 

Alumina-particle air abrasion is an excellent procedure to 
increase the adhesion of luting composites to zirconia ceram-
ics.44,57 Alumina-particle air abrasion followed by an appropri-
ate chemical bonding process has been reported to result in 
long-term, durable bonding to zirconia.29,41,58 In addition, 
previous studies have reported that MDP-containing luting 
composites create a stable and strong bond to alumina-parti-
cle air-abraded zirconia that survives thermocycling.29,33 
These findings have been supported by systematic reviews 
evaluating both in-vitro and clinical studies; these reveal 
strong clinical evidence that alumina-particle air abrasion with 
alumina particles at a moderate pressure (up to 2.5 bar) in 
combination with a phosphate–monomer-based primer and/
or luting composite provides long-term durable bonding to 
zirconia ceramics under the stresses of oral conditions.7,24

Aging or low-temperature degradation (LTD) of zirconia is a 
process that can occur experimentally10,63 or in the oral en-
vironment by direct exposure to different stimuli, such as oral 
masticatory forces, the effect of water, pH changes, and tem-
perature fluctuations,10,11,14,21 indicating that environmental 
conditions could accelerate LTD in zirconia ceramics. In addi-
tion to evaluating the adhesion to newly processed zirconia 
as received from the dental laboratory, it is also clinically 
relevant to evaluate adhesion to aged zirconia. It may be 
necessary to repair zirconia restorations with fractured ve-
neers that have been exposed to the oral environment for a 
long time. The influence of aging and surface treatment on 
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translucent 3Y-TZP zirconia has not been sufficiently investi-
gated. Aging zirconia in an autoclave for 5 h at 134°C under 
2-bar pressure has been reported to reduce microtensile 
bond strength after 24 h of storage when the zirconia speci-
mens were bonded with the luting composite RelyX Unicem 
(3M Oral Care; St Paul, MN, USA). However, these specimens 
were not subjected to artificial aging with thermocycling, so 
long-term bond strength was not evaluated.38

In order to evaluate the bonding durability to translucent 
3Y-TZP zirconia, the current study investigated the effect of 
different surface conditioning methods, including aging and 
alumina-particle air abrasion at varied pressures and prim-
ing, on the long-term resin bond strength to highly translu-
cent zirconia. The null hypotheses of the current study were 
that no influence of (1) aging zirconia, (2) using different 
pressures during alumina-particle air abrasion, and (3) 
using different adhesive luting systems on bonding durabil-
ity to translucent 3Y-TZP zirconia.

MATERIALS AND METHODS

A translucent 3Y-TZP dental zirconia (Katana HT10, Kuraray 
Noritake; Tokyo, Japan) was used in this study. One hundred 
ninety-two disk-shaped specimens were cut and sintered in 
a sintering oven (Nabertherm; Bremen, Germany) according 
to the manufacturer’s instructions (1500°C; holding time: 
2 h) to obtain fully sintered zirconia disks with a final diam-
eter of 8 mm and a thickness of 3.2 mm. The underside of 
each disk was polished with rotary carbide paper to 600 
grit. The specimens were then divided into two main groups 
according to aging: aged (group A) and non-aged (group N). 

Aging 

Aging was performed after sintering on half of the zirconia 
disks (n = 96) according to ISO standard 13356 at 134°C 
under 2 bar for a period of 20 h in an autoclave (CS, WE-
BECO; Bad Schwartau, Germany). Subsequently, the speci-
mens were cleaned in an ultrasonic bath with 99% isopro-
panol for 3 min. This aging protocol was used in this study, 
because previous studies have shown that aging at 134°C 
under 2 bar for 20 h promotes extensive t→m phase trans-
formation.10,21 Thus, the aging performed in this study was 
considered sufficient to observe significant changes in-
duced by different surface treatments. 

Table 1  Material compositions

Name Lot No. Composition Manufacturer 

Katana
(HT10)

DLUTX/
DMRFH

(ZrO2 + HfO2 + Y2O3) > 99.0%, yttrium oxide (Y2O3) > 4.5–≤6.0%, hafnium 
oxide (HfO2) ≤5.0% and other oxides ≤1.0% 

Kuraray Noritake, 
Tokyo, Japan

Clearfil FII
New Bond

Base 
paste

2F0016 Bisphenol A diglycidylmethacrylate <18%, hydrophobic aliphatic dimethacrylate, 
silanated silica filler, colloidal silica, accelerators, pigments

Catalyst 
past

2A0015 Bisphenol A diglycidylmethacrylate 5-25%, triethylene glycol 
dimethacrylate <7%, silanated silica filler, colloidal silica, catalysts, pigments

Panavia V5 990010 Bisphenol A diglycidylmethacrylate 5-15%, triethylene glycol 
dimethacrylate <5%, silanated barium glass filler, silanated fluoroalminosilicate 
glass filler, colloidal silica, surface-treated aluminum-oxide filler, hydrophobic 
aromatic dimethacrylate, hydrophilic aliphatic dimethacrylate, dl- 
camphorquinone, initiators, accelerators and pigments

Clearfil Ceramic 
Primer Plus

9B0006 Ethanol >80%, 3-trimethoxysilylpropyl methacrylate <5% and 
10-methacryloyloxydecyl dihydrogen phosphate (MDP)

Panavia SA Plus 7U0058 MDP, Bis-GMA, TEG-DMA, hydrophobic aromatic dimethacrylate, HEMA, silanated 
barium glass filler, silanated colloidal silica, dl-camphorquinone, peroxide, 
catalysts, pigments, hydrophobic aliphatic dimethacrylate, surface treated 
sodium fluoride, accelerators

Oxyguard II 1B0039 Glycerol 50-70% , polyethyleneglycol, catalysts, accelerators, dyes

Table 2  Mean and standard deviation (SD) of the  
monoclinic phase ratio of zirconia measured by XRD

Group Aging Monoclinic phase ratio 
mean ± SD (vol%)

SIN Non-aged (N) 0.0 ± 0.0

Aged (A) 39.9 ± 0.7

1B Non-aged (N) 7.5 ± 2.4

Aged (A) 41.5 ± 0.3

2.5B Non-aged (N) 10.4 ± 1.5

Aged (N) 38.5 ± 2.8
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lar to the zirconia bonding surface. Excess luting composite 
was removed with a sponge pellet, and oxygen-blocking gel 
(Oxyguard II; Kuraray Noritake, Okayama, Japan) was ap-
plied at the bonding margins. The margins were light poly-
merized for 20 s from two opposite sides using an LED cur-
ing unit (SmartLite PS, Dentsply Sirona; Konstanz, 
Germany) with a light intensity of 900-1200 mW/cm2, fol-
lowed by additional polymerization for 90 s in a light-polym-
erizing unit (Heraflash, Heraeus Kulzer; Hanau, Germany). 
The study design is illustrated in Fig 1.

Eight specimens from each group were stored in a dis-
tilled water bath at 37°C for 3 days without thermocycling to 
record the initial bond strength. The remaining 8 specimens 
were stored in the water bath at 37°C for 150 days, inter-
rupted by thermocycling between 5°C and 55°C in distilled 
water with a dwell time of 30 s for 37,500 cycles before 
measuring the tensile bond strength.2,25,60,61 All the mater-
ials used and their compositions are listed in Table 1.

Phase Analysis

The percentage of monoclinic and tetragonal phases on 
the zirconia surface after aging and the different surface 
treatments was determined by x-ray diffraction (Seifert XRD 
3000 PTS, GE; Munich, Germany). Three specimens were 
selected from each group, and each was placed in the 
holder of the diffractometer and subjected to Cu K  radi-
ation. The spectrum was recorded within the range of 20°–
40°, with a step size of 0.04°, and with a scan time of 
10 s per step. Voltage and current were set to 40 kV and 
40 mA, respectively. Analysis software (Peakfit v4.12, Sys-
tat Software; Erkrath, Germany) was used to evaluate the 

Surface Treatment and Bonding

For each main group, a different surface treatment was ap-
plied: no surface treatment after sintering (group SIN), alu-
mina-particle air abrasion either with 1 bar (group 1B), or 
2.5 bar (group 2.5B) using a spot-blasting unit (P-G 400 K 
Spot Fine Blasting Unit, Harnish+Rieth; Winterbach, Ger-
many). Air abrasion was performed with 50-μm Al2O3 parti-
cles for 15 s at a distance of 10 mm with nozzle motion in 
both the horizontal and vertical directions. Subsequently, all 
specimens were cleaned in an ultrasonic bath with 99% 
isopropanol for 3 min. Three disks were selected from each 
group to be examined using XRD to evaluate the phase 
transformation of zirconia as described above.

Plexiglas tubes with a standard diameter of 3.2 mm were 
filled with self-polymerizing restorative composite resin (Clearfil 
FII New Bond, Kuraray Noritake; Tokyo, Japan) (n = 16/group). 
The self-polymerizing restorative composite resin polymerized 
in 10 min. Each group was divided into 2 subgroups (n = 16/
subgroup) according to the luting composite used: group V5 
(Panavia V5; Kuraray Noritake) and group SA (Panavia SA Plus 
Automix; Kuraray Noritake). For group V5, disks were condi-
tioned with a universal ceramic primer (Clearfil Ceramic Primer 
Plus; Kuraray Noritake). A coating of primer was applied with a 
brush to the bonding surface for 10 s and allowed to dry. The 
entire bonding surface was then dried with a mild, oil-free air 
stream. Then, the dual-curing luting composite site was ap-
plied. For group SA, the specimens were bonded directly with 
the dual-curing adhesive resin. 

The filled tubes were then bonded to the zirconia surfaces 
using an alignment apparatus under a load of 7.4 N.4,32,60 
The apparatus ensured that the tube axis was perpendicu-

Table 3  Tensile bond strength in MPa (medians, n = 8) 

Main group Group code

3 days 150 days

Median Median

Panavia SA, no aging (Gr factor 1) N-SIN-SA   10.8 B,a,α 0.0 B,a,β

N-1B-SA   29.5 A,a,α 25.1 A,ab,α 

N-2.5B-SA 37.0 A,a,α 27.0 A,a,β

Panavia V5, no aging (Gr factor 2) N-SIN-V5   12.6 C,a,α 0.0 C,a,β

N-1B-V5   27.3 B,a,α 11.7 B,c,β

N-2.5B-V5 38.7 A,a,α 22.8 A,ab,β

Panavia SA, 20 h aging (Gr factor 3) A-SIN-SA   6.4 B,b,α 0.0 B,a,β

A-1B-SA 32.5 A,a,α 27.7 A,a,α

A-2.5B-SA 32.4 A,a,α 23.2 A,ab,β

Panavia V5, 20 h aging (Gr factor 4) A-SIN-V5   7.5 B,ab,α 0.0 B,a,β

A-1B-V5 29.5 A,a,α 15.4 A,bc,β 

A-2.5B-V5 34.0 A,a,α 20.1 A,b,β

Statistically different medians (p ≤ 0.05) are indicated by different uppercase letters (within a column for the same grouping factor), or by different lowercase 
letters (within a column for the same surface treatment), or by different Greek letter (within a row).
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integrated intensities of the relevant peaks of the diffrac-
tion patterns.

The proportion of monoclinic phase (Xm) was calculated 
using the method developed by Garvie and Nicholson, as 
follows:15

  
Xm = (IM(111) + IM(111-)) / (IM(111) + IM(111-) + IT(111)),

 
where M(111) and M(111-) represent the intensities of the 
monoclinic peaks and T(111) indicates the intensity of the 
tetragonal peak. IT and IM represent the integrated area 
under the tetragonal (111) and monoclinic (111) peaks as 
well as monoclinic (111- ) peaks around 30º, 31º, and 28º, 
respectively. The volumetric fraction Vm was calculated ac-
cording to Torayra and Yoshimura, as follows:56

 
Vm = (1.311*Xm) / (1+0.311*Xm)

Tensile Bond Strength and Failure Mode

After storage under the different conditions, the tensile 
bond strength was determined with a universal testing ma-
chine (Zwick Z010, ZwickRoell Group; Ulm, Germany) at a 
cross-head speed of 2 mm/min using a self-aligning chain-
loop attachment.3,4,60,61

The debonded surfaces of the zirconia specimens were 
examined with an optical macroscope (Wild Heerbrugg Leica 
Mikroskop M420; Heerbrugg, Switzerland) at 35X magnifica-
tion. Debonded surfaces were classified as cohesive failure 
within the luting or composite resin, adhesive failure at the 
interface between the zirconia and luting composite, or 
mixed adhesive/cohesive failure mode. Failure areas of 

each mode were calculated and expressed as a percentage 
of the total bonding surface area for each test group. Repre-
sentative specimens were sputter-coated with a conductive 
gold alloy layer approximately 30 nm thick, then examined in 
a scanning electron microscope (SEM, XL 30 CP, Philips; Kas-
sel, Germany) with an acceleration voltage of 15 KeV.4,60,61

Data were collected and checked for normal distribution 
using the Shapiro-Wilk test. As the data were not normally 
distributed, statistical significance was tested with the 
Kruskal-Wallis test followed by pairwise comparison using 
the Mann-Whitney U-test (  = 0.05). A correction for multi-
ple comparisons was performed with the Bonferroni-Holm 
method. All calculations were made with a statistical soft-
ware program (IBM SPSS for Windows; Version 20.0, IBM 
SPSS; Armonk, NY, USA).

RESULTS

Aging and Phase Analysis

XRD showed that both aging and different surface treat-
ments resulted in different amounts of monoclinic phase. 
The highest monoclinic phase ratio (vol%) was found in 
groups A-SIN, A-1B, and A-2.5B, while the groups N-1B and 
N-2.5B showed a lower monoclinic phase ratio and group 
N-SIN exhibited no monoclinic phase (Table 2). 

Tensile Bond Strength 

The median tensile bond strength (TBS) for all groups is 
shown in Table 3. After 3 days of water storage, 20 h of aging 
showed no effect on the TBS, except in group A-SIN-SA, 
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Fig 2  Boxplot of TBS after 3 days of storage. Fig 3  Boxplot of TBS after 150 days of storage with thermocycling.
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where TBS decreased significantly compared to the non-aged 
groups. Alumina-particle air abrasion caused a significant in-
crease in TBS for all test groups. However, the different pres-
sures used did not yield a statistically significant effect, ex-
cept in group V5, where 1-bar pressure resulted in a 
statistically significantly lower TBS than did 2.5-bar pressure. 
Although most groups showed a significant decrease in TBS 
after long-term storage in water with thermocycling, group 
N-1B-SA showed no statistically significant decrease in TBS 
after thermocycling. In contrast, group V5, which was abraded 
at 1 bar pressure, showed a significant decrease in TBS after 

thermocycling compared with abrasion at 2.5 bar pressure. 
Figures 2 and 3 show boxplots for TBS after 3 days of stor-
age and 150 days of storage with thermocycling.

The mode of failure of the test groups is illustrated in 
Figs 4 and 5. Most specimens tested after 3 days showed 
a predominantly cohesive failure within the luting composite 
and resin in the tube, except for groups that received no 
surface treatment. These groups showed almost exclusively 
adhesive failure. After thermocycling, groups A-1B-V5 and 
N-1B-SA shifted from cohesive to adhesive failure; in con-
trast, the other groups, except group SIN, still had predomi-

Fig 4  Type of bond  
failure mode as identified 
with a light microscope 
at 30X magnification 
and calculation in % of 
bonding area for all test 
groups bonded with 
Panavia SA Plus.

Fig 5  Type of bond  
failure mode as identified 
with a light microscope 
at 30X magnification 
and calculation in % of 
bonding area for all test 
groups bonded with 
Panavia V5.
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nantly cohesive failures. All group-SIN specimens debonded 
spontaneously during thermocycling in purely adhesive fail-
ure mode (Fig 6).

DISCUSSION 

Tensile bond strength testing was chosen because of its uni-
form stress distribution and to avoid inaccuracies resulting 
from complex forces occuring in shear bond strength tests.12 
A microtensile bond test was not chosen to reduce tech-

nique sensitivity and exclude the micromovements and vibra-
tions produced during specimen preparation.43 The weak 
point of the tensile bond strength test, ie, the perpendicular 
alignment of the composite resin tubes on the ceramic spec-
imens, was solved by using a paralleling bonding device that 
ensured an exact 90° alignment on the ceramic surface.55

According to the ISO specification, thermocycling should 
be performed between 5° and 55°C, with a minimum of 500 
cycles and a dwell time > 20 s. However, additional cycles 
or longer dwell times have been suggested to simulate 
more time in the oral cavity.22,36,42 In this study, the thermo-

Fig 6  SEM of represen-
tative specimens of  
failure mode for the test 
groups; magnifications of 
65X (a,c,e) and 125X 
(b,d,f) were used. (a) and 
(b) subgroup N-SIN-SA 
after 150 days of storage 
with thermocycling pres-
ents complete adhesive 
failure. (c) and (d) subgroup 
N-1B-V5 after 3 days of 
storage presents a pre-
dominantly cohesive fail-
ure mode. C1, cohesive 
failure in Panavia V5 luting 
composite; C2, cohesive 
failure in the tube resin. 
Only a small of area at 
the top failed adhesively 
(a). (e) and (f) subgroup 
N-1B-SA after 150 days 
of storage presents a pre-
dominantly cohesive fail-
ure mode; C1, cohesive 
failure in Panavia SA plus 
luting composite; C2, co-
hesive failure in the tube 
resin. Only a small of 
area on the right side 
failed adhesively (a).

a

c

e
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d
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cycling protocol before TBS testing was adopted from sev-
eral other studies on resin bonding to zirconia.2,29,61 This 
protocol was employed because it used the greatest num-
ber of cycles suggested in the literature (37,500 cycles), 
thus simulating more time in the oral cavity and ensuring 
complete water saturation of the bonded specimens.2,13,29 

The aging protocol used in the current study has been 
reported to promote extensive t→m phase transforma-
tion,10,21 which should be sufficient to observe significant 
changes induced by different surface treatments. Low-tem-
perature degradation initially occurs at the superficial 
grains, where water is incorporated into zirconia grains by 
filling oxygen vacancies and later spreads to the surface, 
increasing its roughness.46,63 Afterwards, LTD extends into 
the bulk of the material63 and negatively affects the density 
and mechanical properties of Y-TZP structures.6,17,32

The current study showed that 20 h of aging in an auto-
clave significantly decreased TBS only for group A-SIN-SA in 
comparison with the non-aged groups after 3 days of stor-
age. A previous study38 reported that aging ZirCAD (Ivoclar 
Vivadent; Schaan, Liechtenstein) zirconia specimens for 5 h 
in an autoclave significantly decreased the bond strength 
after 24 h of storage in distilled water at 37°C without ther-
mocycling. These specimens received no surface treatment 
and were bonded with RelyX Unicem (3M Oral Care) and 
conditioned with an MDP-based primer. This reduction in 
bond strength for the aged zirconia might be because of the 
surface alteration caused by the monoclinic phase on the 
zirconia surface, which might compromise the durability of 
the bond. These results were not considered clinically rele-
vant, as TBS was reported after only a short period of stor-
age without thermocycling. 

Alumina-particle air abrasion of zirconia ceramic im-
proves the bond strength of luting composite to zirconia 
and its durability.26,60 Increasing the surface roughness and 
bonding surface area leads to improved surface wettability 
and subsequently promotes bonding to zirconia.28 However, 
zirconia treated with high pressure alumina-particle air abra-
sion might develop surface cracks or fractures, and this 
might reduce its mechanical strength.16,64

In this study, alumina-particle air abrasion caused a sig-
nificant increase in TBS for most test groups, consistent 
with previous studies.44,51,57 In addition, the different pres-
sure had a statistical effect on the luting composite Pana-
via V5, where TBS was significantly higher after alumina-
particle air abrasion with 2.5 bar than with 1 bar. In 
contrast, specimens bonded with Panavia SA plus were not 
affected by different pressures. A recent study52 reported 
that TBS of the specimens bonded with Panavia V5 in-
creased with increasing pressure during alumina-particle air 
abrasion when evaluated after short-term water storage 
(1 day and 30 days without thermocycling). In contrast, 
using other bonding systems, low pressure of 0.5 bar dur-
ing alumina-particle air abrasion effectively promoted the 
bonding of primer-containing adhesive luting systems.25 
Also, another study reported that there were no significant 
differences in the bond strength after using different alu-
mina-particle air abrasion pressures of 1, 2, 4 or 6 bar.31 

Thus, it appears that the bond strength of some adhesives 
is affected more by varying alumina-particle air abrasion 
pressure than others. 

The demand for adhesive bonding systems has in-
creased with the use of esthetic ceramic materials in den-
tistry, as luting composites are generally superior to conven-
tional luting cements in terms of strength, wear resistance, 
and esthetics.5,18,38 Self-adhesive luting composites have 
been introduced into the dental market to simplify bonding 
procedures of all-ceramic restorations. However, the used of 
luting composite with a separate primer showed more prom-
ising results for bonding to dentin and lithium-disilicate 
glass-ceramic.37 Furthermore, studies20,54 showed that pre-
treatment of surface zirconia with a 10-MDP-containing 
primer enhanced the bond strength and its durability. The 
current results showed a significant decrease in bond 
strength of most test groups after long-term storage in 
water with thermocycling, compared with only 3-day water 
storage, which is consistent with previous studies.13,29,58 A 
previous investigation38 reported that the aging of zirconia 
in an autoclave for 5 h vs 24-h water storage without ther-
mocycling decreased the bond strength to zirconia signifi-
cantly. However, the current study subjected specimens to 
150-day water storage with additional thermocycling. The 
recorded reduction in bond strength to aged zirconia might 
be due to the plasticization effect of water on the resin ma-
trix in long-term water storage with thermocycling,19 which 
leads to degradation within the luting composite itself, as 
has already been shown for other resin composites.47 

The N-1B-SA and A-1B-SA groups showed no significant 
decrease in TBS. This finding is consistent with the results of 
a previous study,65 which reported that the presence of MDP 
in the luting composite improved its long-term bonding 
strength to zirconia. The current results confirm the clinical 
evidence that showed long-lasting bond strength of luting 
composites to zirconia when a phosphate–monomer-contain-
ing primer or luting composite was used in combination with 
alumina-particle air abrasion, even under moist and stress-
ful oral conditions.24

The mode of failure after 3-day storage was predomi-
nantly cohesive in most of the test groups. The current re-
sults confirmed previous findings that adding a phosphate-
ester monomer (10-MDP) promotes the bond strength of 
luting composite to zirconia.30,60 In addition, after long-term 
storage in water with thermocycling, most test groups still 
exhibited predominantly cohesive failures, with a statisti-
cally significant decrease in the bond strength. These find-
ings concur with the results of previous studies29,32,60 in 
which 10-MDP-containing primers and luting composites 
were used, showing exclusively cohesive failures after 3-day 
storage and remaining nearly completely cohesive over 
150 days of water storage with thermocycling. The ob-
served decrease in bond strength might be due to the air 
bubbles in the luting composite, as detected during SEM 
examination, or from a reduction in cohesive strength of the 
luting composite caused by aging. In addition, as a result of 
the plasticization effect of water on the resin matrix,19 a 
certain degradation within the luting composite itself oc-
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curred, which has been reported for other composite res-
ins.47 Moreover, groups which received no surface treat-
ments debonded spontaneously during thermocycling in an 
almost exclusively adhesive failure mode. This confirms 
that the cleaning and roughening effect is essential to 
achieve durable bond strength of the adhesive to zirco-
nia.23,29,61 Our results demonstrate that the 10-MDP mono-
mer, either included in the luting composite or used as a 
separate primer, promotes a long-term durable bond to zir-
conia when combined with alumina-particle air abrasion 
treatment. However, the pressures tested led to different 
results depending on the type of bonding system used.

Limitations of the present study included its in-vitro de-
sign, which may not accurately simulate clinical conditions. 
Furthermore, no additional mechanical loading was applied 
to the bonded specimens in this study. In further studies, 
mechanical fatigue could be included along with thermal 
stresses to evaluate their combined influence. 

CONCLUSIONS

Twenty hours of aging in an autoclave does not affect the 
resin bond strength to translucent 3Y-TZP zirconia. For Pan-
avia V5 luting composite (primer/resin system), higher pres-
sure during alumina-particle air abrasion might help opti-
mize the surface area of zirconia for bonding and obtain 
strong and durable bonding to zirconia.
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Clinical relevance: Alumina-particle air abrasion  
improved TBS, while the pressures used yielded  
variable results depending on the type of bonding  
system employed.


