

Int Poster J Dent Oral Med 2001, Vol 3 No 1, Poster 60

Intrasurgical and computer-assisted radiographic measurement of interproximal bone loss: A comparison of 2 methods

Language: English

Author(s): Peter Eickholz, Ti-Sun Kim, Ernest Hausmann

Dept. of Operative Dentistry & Periodontology, University of Heidelberg, Germany; Computer Analysis Plus, Amherst, NY & Dept. of Oral Biology, SUNY Buffalo, NY, USA

Date/Event/Venue:

 $05.04.2000\hbox{--}08.04.2000$

78th General Session & Exhibition of the International Association for Dental Research (IADR)

Washington DC, USA

Objective

Comparison of computer-assisted linear measurements of interproximal intrabony defects on radiographs using two different methods with the gold standard of intrasurgical measurements.

Material and Methods


Patients

- 22 patients (11 female) 34 -64 years of age.
- untreated advanced periodontal disease.
- each exhibiting at least one interproximal intrabony defect.

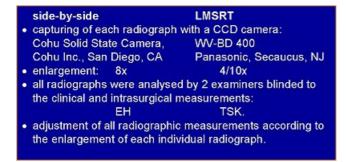
Radiographic examinations

- standardized bitewing radiographs of teeth with intrabony defects using modified film holders (VIP 2 Film Positioning, UpRad Corp., Fort Lauderdale, FL, USA) (Fig. 1, 2). Two orthodontic wires were placed on the mandibular side of the filmholder at a specified position (Fig. 1). Shadows of these wires were cast onto the radiographs (Fig. 3). From the distances between the images of these wires on a radiograph, the vertical and horizontal angulation difference between the central beam and the orthoradial projection could be calculated.
- intraoral dental films (Ultraspeed, Eastman Kodak Co., Rochester, NY, USA) size 2.
- x-ray source (Heliodent 70, 70 kV, 7 mA, Siemens, Bensheim, Germany).
- development unit (Periomat, Dürr Dental GmbH, Bietigheim-Bissingen, Germany).

Clinical examinations

At 6 sites per tooth:

- Gingival Index (GI) and Plaque Index (PII).
- PD and PAL-V to the nearest 0.5 mm (PCPUNC 15).


After reflection of a full thickness flap:

- distance cemento-enamel junction (CEJ) to the most apical extension of the bony defect (BD).
- the height of the 3-wall as well as the 2- and 3-wall component of each interproximal lesion.
- all clinical measurements were performed by one examiner (PE) to the nearest 0.5 mm (PCPUNC 15).

Radiographic evaluation

Measurements using a loupe of 10 fold magnification and a 0.1 mm grid (Scale loupe 10, Peak, Tohkai Sangyo, Tokyo, Japan):

- distances between the projections of the orthodontic wires that had been fixed to the filmholders vertically (dv) and horizontally (dh) on every radiograph (Fig. 3).
- the length LR of the cast shadow of the wire placed on the maxillary side of the filmholder and calculation of the radiographic enlargement of each radiograph (Fig. 3).

Definition of landmarks

BD was defined as most coronal point where the periodontal ligament space showed a continuous width. If no periodontal ligament space could be identified the point where the projection of the AC crossed the root surface was taken as landmark. If both structures could be identified at one defect, the point defined by the periodontal ligament was used as BD. If several bony contours could be identified the most apical that crossed the root was defined as the BD.

Statistical analysis

- Kolmogorov-Smirnov/Lilliefors-Test for normal distribution.
- comparison of intrasurgical/radiographic measurements by paired t test.
- stepwise multiple linear regression analysis:
 - dependent variable: Diff. intrasurgical/radiographic measurements
 - explanatory variables: patient, angulation differences, analysing method, intrasurgical parameters.

Results

Results 33 radiographs of 34 intrabony defects Tab.1: clinical parameters angulation/°						
	GI	PII	PD/mm	PAL-V/mr	n vertical	horizont.
mean+SD	1.9 <u>+</u> 0.3	0.3 <u>+</u> 0.7	8.3 <u>+</u> 1.8	9.0 <u>+</u> 1.6	2.5 <u>+</u> 1.5	0.8 <u>+</u> 0.7
interval	1.0-2.0	0.0-3.0	5.5-12.0	6.5-13.0	0.0-5.5	0.0-2.6
Tab. 2: intrasurgical radiographic parameters/mm						
m	nean <u>+</u> SD	interval		mear	±SD	interval
CEJ-BD 9	.2 <u>+</u> 2.1	5.0-14.0	LMSRT	8.4 <u>+</u> 1	.9 p < 0.05	5.0-12.7
			side-by-	side 7.7±2	2.1 p < 0.005	4.0-13.4
hight						
2/3wall 4	.4 <u>+</u> 1.6	0 - 8.5	differen	ce LMS	RT-side-b	y-side
3wall 2	.4 <u>+</u> 1.5	0 - 4.5		0.7 <u>+</u> 2	2.3 n.s. (p =	0.084)
Tab. 3: stepwise multiple linear regression analysis:						
dep. variable: △CEJ-BD intrasurgical - radiographic/mm; n = 68; R² = 0.515; R² _{adjusted} = 0.458; s.e.(estimate) = 1.532						
n = 68; R	$^2 = 0.515$	5; R ² adjust	$_{\rm ed} = 0.45$		timate) =	= 1.532
			b	s.e.(b)	β	р
constant			-3.357		12112424	0.000
patient 12			-2.288		0.970	0.006
patient 13			-1.900		0.945	0.023 0.008
2wall con		ical	0.375 0.472		0.694 0.856	0.000
CEJ-BD intrasurgical 0.472 0.098 0.856 0.000 analysis of variance						
source		SSQ	100.0	MSQ	The state of the s	<u>р</u>
regressio residual	n	149.52 140.91		21.360 2.349	9.095	0.000

Discussion and Conclusions

• both computer-assisted analyses of linear distances on radiographs underestimated the amount of interproximal bone loss as assessed by intrasurgical measurements.

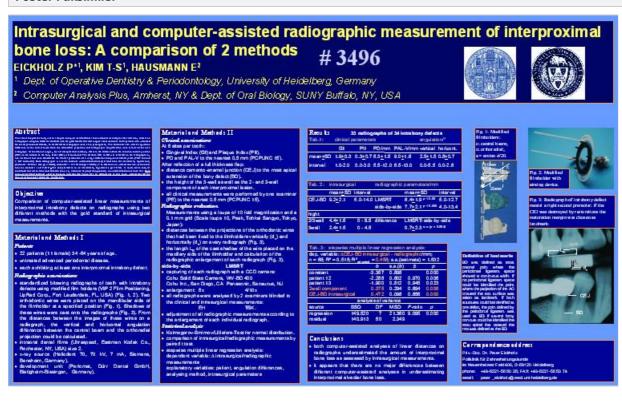
• it appears that there are no major differences between different computer-assisted analyses in underestimating interproximal alveolar bone loss.

Abbreviations

GI: Gingival Index PII: Plaque Index PD: probing depth

PAL-V: vertical probing attachment level

CEJ: cemento enamel junction


AC: alveolar crest BD: bony defect SD: standard deviation SSQ: sum of squares MSQ: mean of squares DF: degrees of freedom

This Poster was submitted on 30.01.01 by Dr. Peter Eickholz.

Correspondence address:

*Dr. Peter Eickholz*Universität Heidelberg
Im Neuenheimer Feld 400
69120 Heidelberg

Poster Faksimile:

