

Int Poster J Dent Oral Med 2007, Vol 9 No 02, Poster 360

International Poster Journal

Tri-axial Accelerometric Analysis of Dynamic Patterns of Mandibular Movements

Language: English

Authors:

Dr. Ivica Pelivan¹, Prof. dr. Melita Valentic-Peruzovic¹, Dr. Ivan Michieli², Dr. Amir Dubravic², Dr. Amir Catic¹, Dr. Iva Alajbeg¹, Dr. Davor Illes¹,

IP

 1 Department of Prosthodontics, School of Dental Medicine, University of Zagreb , Croatia

² Electronic Department, Rudjer Boskovic Institute, Zagreb, Croatia

Date/Event/Venue:

September 13-16, 2006 PEF 2006 - Pan European Federation of IADR Trinity College Dublin, Ireland

> Poster Award IADR CED Travel Stipend Award

Introduction

Accelerometric analysis represents a simple and unique method for acquiring specific dynamic data of mandibular movement which can be used for determining physiological as well as pathological dynamics' patterns.

Material and Methods

This pilot study included a healthy subject without any signs or symptoms of temporomandibular disorders which was determined using RDC/TMD examination protocol and computerized analysis of dental occlusion (T-Scan ®II, Tekscan, USA). Accelerations were measured by tri-axial MEMS wireless acceleration sensor (GLinkTM, Microstrain, USA) with range of ±10G and freely selected sweep rate of 1 kHz. Sensor was mounted on custom-made holder firmly fixed to subject's mandibular teeth to avoid soft tissues' movement artefacts. Acquisition of acceleration data was performed during mouth opening-closing cycles (OC), protrusive (P) and right and left laterotrusive movements (RL, LL) with predetermined pace and amplitude. By means of acceleration values during mandibular movements was performed using analysis of variance (ANOVA) and pair wise comparisons (post-hoc Scheffe test).

Results

Raw tri-axial accelerometric data recorded during mandibular opening-closing cycles.

Y-axis channel (vertical) acceleration and velocity graphs of mandibular openingclosing cycles.

Raw tri-axial accelerometric data recorded during mandibular opening-closing cycles are showed in Figure 1. Similar data were recorded during left and right laterotrusive as well as during protrusive movements of mandible. Analysis of acceleration and calculated velocity data during protrusive and laterotrusive movements also reveal regular, repetitive and recognizable patterns. Acceleration and calculated respective velocities in Y-axis (frontal plane) of opening and closing cycles demonstrate smooth, repetitive and distinctive patterns of mandibular movements (Figure 2). For the purpose of this study Y-axis (vertical) accelerometric values for different mandibular movements (Table 1) were analysed. The analysis of variance showed that acceleration values of performed mandibular movements were significantly different (P<0.05). The post-hoc Scheffe tests (Table 2) showed that differences were found between OC and three other mandibular movements (RL, LL and P) (P<0.05). There was no significant difference between RL and LL (P>0.05).

	Mean	SD	SE	95% Confidence Interval for Mean	
				Lower Bound	Upper Bound
ос	4,79	3,56841	0,79792	3,1199	6,4601

RL	1,192	0,79923	0,17871	0,8179	1,5661		
LL	1,0915	0,70327	0,15726	0,7624	1,4206		
PR	2,985	1,00625	0,225	2,5141	3,4559		
Table 1. Descriptive statistics for acceleration values [m/s2] in V suis for diffe							

Table 1: Descriptive statistics for acceleration values [m/s2] in Y-axis for different mandibular movements (OC, LL, RL and PR).

		Mean	Sig.	95% Confidence Interval for Mean	
				Lower Bound	Upper Bound
ос	RL	3,598	<0,001	1,8542	5,3418
	LL	3,6985	<0,001	1,9547	5,4423
	PR	1,805	0,039	0,0612	3,5488
RL	ос	-3,598	<0,001	-5,3418	-1,8542
	LL	0,1005	0,999	-1,6433	1,8443
	PR	-1,793	0,041	-3,5368	-0,0492
LL	ос	-3,6985	<0,001	-5,4423	-1,9547
	RL	-0,1005	0,999	-1,8443	1,6433
	PR	-1,8935	0,028	-3,6373	-0,1497
PR	ОС	-1,805	0,039	-3,5488	-0,0612
	RL	1,793	0,041	0,0492	3,5368
	LL	1,8935	0,028	0,1497	3,6373

Table 2: Comparison of acceleration values [m/s2] in Y-axis for different mandibular movements (ANOVA and post-hoc Scheffe test).

Conclusions

Acceleration and velocity during mouth opening-closing cycles demonstrate repetitive and distinctive dynamics patterns. They are significantly different (P<0.05) from patterns of protrusive and laterotrusive movements which also demonstrate repetitive and regular form. Those data could be used as the basis for time and spectral domain attribute description of regular and pathological mandibular movements. Accelerometric measurements could be applicable as diagnostic tool in analysis of mandibular movements.

Literature

- 1. Flavel SC, Nordstrom MA, Miles TS. Postural stability of the human mandible during locomotion. J Biomech 2003; 36:759-764.
- Butcher MT, Ashley-Ross MA. Fetlock joint kinematics differ with age in thoroughbred racehorses. J Biomech 2002; 35:563-571.
 Throckmorton GS, Ellis E, Hayasaki H. Masticatory motion after surgical or nonsurgical treatment for unilateral fractures of the mandibular condylar process. J Maxillofac Surg 2004; 62:127-138.
- 4. Perring S. Summers A. Jones EL. Bowen FJ. Hart K. A novel accelerometer tilt switch device for switch actuation in the patient with profound disability. Arch Phys Med Rehabil 2003; 84(6):921-923.
- 5. Wang LA. Hu WM. Tan TN. Recent developments in human motion analysis. Pattern Recognition 2003; 36(3):585-601.
- 6. Throckmorton GS, Ellis E, Hayasaki H. Jaw kinematics during mastication after unilateral fractures of the mandibular condylar process. Am J Orthod Dentofacial Orthop 2003; 124:695-707.

Abbreviations

Abreviations in Table 1 and Table 2:

OC opening-closing RL right laterotrusion LL left laterotrusion PR protrusion SD Standard deviation SE Standard error

This Poster was submitted by Dr. Ivica Pelivan.

Correspondence address: *Dr. Ivica Pelivan*

Dr. IVICA PEIIVAN School of Dental Medicine Department of Prosthodontics University of Zagreb Gunduliceva 5 HR-10000 Zagreb Croatia

Poster Faksimile:

