

3D-printed polyurethane-based scaffolds for bone regeneration: a pilot study



Vitor de Tol edo Stuani* ^{1,2}, Masazumi Nagai ², Chia Yu Chen ², Yu Fan Shen ^{3,4}, Yi Wen Chen ^{3,5}, David Minj oon Kim ²

¹ Department of Periodontics, Bauru School of Dentistry – University of Sao Paulo, Bauru, SP, Brazil
² Department of Oral Medicine, Infection and Immunity – Harvard School of Dental Medicine, Boston, MA, USA
³ 3D Printing Medical Research Center – China Medical University Hospital, Taichung, Taiwan

⁴ Department of Bioinformatics and Medical Engineering – Asia University, Taichung, Taiwan ⁵ Graduate Institute of Biomedical Sciences – China Medical University, Taichung, Taiwan

OBJECTIVE The objective of this pilot study was to evaluate the viability and cellular migration of preosteoblasts (MC3T3-E1) on scaffolds made with a 3D-printable polyurethane-based material using a Milcraft 125 3D-printer (Milcraft®, Taiwan). In addition, the potential use of a platelet extract (PE) gel as a carrier of growth factors was evaluated to enhance cellular proliferation at in bibed scaffolds.

 Vegative Control
 38 ± 6.32 ^A
 60.5 ± 8.54 ^A
 92.5 ± 24.88 ^J

 DMSO:
 dimethyl sulfoxide;
 O
 UV: overnight ultraviolet;
 RLU:

 relative luminescence units.

Table 3.3D-printed scaffolds post-treatedwith different detoxication protocols.

		3 h (RLU)	24 h (RLU)
Dry VC	-	788.33 ± 11.01 ^A	6414 ± 124.13 ^B
VC+deionized water		809.5 ± 14.84 ^A	7477 ± 219.53 ^C
Positive Control		3111.66 ±	8035.16 ±
		220.21 ^D	694.25 ^C
Negative Control		25.66 ± 2.88 ^A	47.66 ± 16.07 ^A

concentration concentration

Scaffold (pg/mL

 $\textbf{0.161} \pm \textbf{0.033}$

 $\begin{array}{c} 0.157 \pm 0.038 \\ 0.105 \pm 0.003 \\ 0.105 \pm 0.054 \\ 0.140 \pm 0.015 \\ 0.100 \pm 0.024 \\ 0.073 \pm 0.019 \\ 0.066 \pm 0.048 \end{array}$

	Scaffold (pg/mL)	12	
5 min	213.31 ± 18.59 ^A		5
15 min	$174.68 \pm 16.90 ^{\text{A},\text{B},\text{D}}$	2	15
30 min	$160.18 \pm 0.72 \ ^{A,B,C,D}$		30
1 h	$182.37 \pm 29.21 \ ^{A,B,D}$		1
3 h	133.33 ± 44.45 ^A		3
6 h	$117.15 \pm 19.91 \ {}^{\text{B,C,D}}$		6
9 h	$87.45 \pm 1.75 \ ^{\text{C,D}}$		Ģ
24 h	126.31 ± 0.78 ^D	-	2

addition of PAR1.

	Scaffold (pg/mL)	Membrane (pg/mL
5min	1.12 ± 2.24 ^A	235.37 ± 15.29 F
15min	9.61 ± 11.31 ^A	$333.31 \pm 27.07 \ ^{\text{B}, \text{G}}$
30min	24.18 ± 26.18 ^A	284.97 ± 19.39 ^{B, F}
1h	38.30 ± 20.81 ^A	297.08 ± 17.50 ^B
3hrs	329.77 ± 43.96 ^{B, G}	415.48 ± 12.03 ^{D, H}
6hrs	486.08 ± 34.50 ^{C, E}	407.67 ± 13.44 ^{D, H}
9hrs	458.12 ± 37.15 ^C , <mark>D</mark> , E	386.46 ± 13.53 ^{G, H}
24hrs	515.48 ± 21.03 E	438.40 ± 12.57 ^{C, H}

conclusions

3D printed polyurethane-based scaffolds are viable constructs for cell migration after a post-processing detoxification.

The best protocol is the use of a vacuum chamber with the scaffold submerged at hot deionized water.
 The use of PE-gel seems to increase cell counting.

The addition of PAR1 seems to be necessary to optimize platelet activation.

This study was supported by Osteology Research Scholarship

Osteology Foundation