PMID- 20556244 OWN - Quintessenz Verlags-GmbH CI - Copyright Quintessenz Verlags-GmbH OCI - Copyright Quintessenz Verlags-GmbH TA - Int J Oral Maxillofac Implants JT - The International Journal of Oral & Maxillofacial Implants IS - 1942-4434 (Electronic) IS - 0882-2786 (Print) IP - 3 VI - 25 PST - ppublish DP - 2010 PG - 461-472 LA - en TI - Evaluation of Multiple Implant-Bone Parameters on Stress Characteristics in the Mandible Under Traumatic Loading Conditions FAU - Guan, Hong AU - Guan H FAU - Staden, Rudi van AU - Staden R FAU - Loo, Yew-Chaye AU - Loo Y FAU - Johnson, Newell AU - Johnson N FAU - Ivanovski, Saso AU - Ivanovski S FAU - Meredith, Neil AU - Meredith N CN - OT - bone density OT - finite element analysis OT - implant diameter OT - implant length OT - masticatory force OT - stress characteristics OT - traumatic loading AB - Purpose: The inter-relationships between various implant and bone parameters were evaluated for their influence on the von Mises stress distribution within the mandible using the finite element procedure. The maximum compressive stresses in cancellous and cortical bone were compared to the published stress-strain data to determine bone fracturing status when the maximum (traumatic) loading is applied. Materials and Methods: Parameters considered herein include the implant diameter and length. Also considered are Young's modulus of cancellous bone and that of cortical bone, along with its thickness. The implant-bone system was modeled using two-dimensional plane strain elements, 50% osseointegration between implant and cancellous bone was assumed, and linear relationships were assumed between the stress value and Young's modulus of both cancellous and cortical bone at any specific point within the mandible. Results: Implant length was more influential than implant diameter within cancellous bone, whereas implant diameter was more influential in cortical bone. A ranking of all the parameters indicated that the applied masticatory force had a more significant influence on the stress difference, in both cancellous and cortical bone, than all other parameters. Young's modulus of cortical bone and implant length were least influential in cancellous and cortical bone, respectively. Under traumatic loading, cancellous bone fractured for all parameter combinations. When all parameters were set to their average values, the cortical bone did not fracture under traumatic loading. However, it fractured if all the parameters were all set to the minimum values. Conclusion: Quantitative evaluation and ranking of the major implant and bone parameters will help provide practical guidelines that are useful for the design and testing of dental implants. The study may also be of interest to dental professionals in evaluating possible implant placement options under various clinical scenarios. AID - 845584