Surgical endodontics has been recently introduced and the paradigm has shifted from mere elimination of periapical pathology to the successful accomplishment of aspects concerning function, aesthetics and preservation of surrounding periodontal structures.

The flap incision requires reflection of the gingival tissue to expose the bone covering the root(s) and the apices in order to treat the apical pathology. A variety of flap incisions have been tried and utilised. Intra-sulcular incisions appear to be the preferable design as they enhance site visibility, and allow easy suturing and tissue handling. Recently, submarginal incision has been introduced to overcome certain limitations associated with intra-sulcular incision, such as gingival recession, longer surgical duration, excessive tissue manipulation, and difficulty in flap closure. However, this design hinders the visibility of the surgical site. Thereafter, the papilla preservation flap was proposed to accomplish better visualisation with healthier primary wound closure, preventing gingival recession and tissue necrosis.

Various complications related to the different incision techniques have been reported in the literature. They can be summarised mainly as gingival recession, post-operative pain, inflammation, hampered mastication and impaired speech. Gingival recession increases the risk of erosion, abrasion, attrition and abfraction, altering the

Gingival Recession after Surgical Endodontic Treatment and Quality of Life: A Systematic Review and Meta-analysis

Ruua A. Alamoudi / Nuha S. Alghamdi / Saad M. Alqahtani / Rana A. S. Alamoudi / Khlood Baghlaf

Purpose: This systematic review addressed flap designs in endodontic surgery which can have an impact on the Oral Health Related Quality of Life (OHRQoL).

Materials and Methods: Four electronic databases were searched (PubMed, Cochrane Library, Web of Science, and Scopus) to identify all studies up to November 2019 that investigated the effect of flap designs on gingival recession and quality of life among healthy adults.

Results: The initial search identified 2701 references. Ten studies were included in this systematic review; two were randomised clinical trials and eight were non-randomised clinical trials. Studies showed that sulcular incision increases the risk of gingival recession and decreases OHRQoL. Two studies were included in the meta-analysis in relation to gingival recession. The pooled results demonstrated that submarginal incision showed a decreased weighted mean difference in gingival recession by 0.31 mm (95% CI: 0.12 – 0.51) (p = 0.002) compared to sulcular incision.

Conclusion: Sulcular incision flap unfavourably affect the level of gingiva and OHRQoL. All nonrandomised studies had a statistically significant bias and the sample sizes in all studies were relatively small. More gingival recession and lower OHRQoL were associated with sulcular incision. Additional investigations are warranted to provide more evidence.

Key words: flap incision, gingival recession, oral health quality of life, surgical endodontic treatment, systematic review

Oral Health Prev Dent 2021; 19: 235–243. doi: 10.3290/j.ohpd.b1176847 Submitted for publication: 11.11.20; accepted for publication: 05.02.21
functional and aesthetic concerns, dentinal hypersensitivity, and root caries. A proper selection of flap design will help minimise post-operative complications and result in a favourable outcome.

Post-operative pain and swelling have a significant effect on the quality of life (QoL). It reflects the goodness of life, as subjectively evaluated by the quality of life experience and objectively judged by assessment of external circumstances. The World Health Organization (WHO) defines QoL as ‘an individual’s perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns.’ Patients’ QoL plays a significant role by helping us evaluate the significance of an illness or disease affecting their daily life. It is not only associated with the severity of the disease, but also a patient’s experience with the contingencies of the disease and treatment consequences. In dental practice, QoL related to oral health has been recently employed as an essential aspect to assess dental treatment outcomes. Inglehart and Bagramian defined OHRQoL as ‘the absence of negative impacts of oral conditions on social life and a positive sense of dental self-confidence.’

Since endodontic surgery adversely influences gingival recession and OHRQoL of the patients, the aims of this systematic review were to answer the following questions:

1) Do different flap designs in endodontic surgery have an impact on gingival recession and gingival aesthetics? 2) Do different flap designs in endodonic surgery have an impact on the OHRQoL?

This review will offer more in-depth knowledge regarding the impact of different flap designs on gingival recession and OHRQoL of patients who underwent periapical endodonic surgery.

MATERIALS AND METHODS

The protocol was registered on PROSPERO (www.crd.york.ac.uk/prospero; CRD42019155488). The inclusion criteria were: studies assessing the impact of different flap designs on the gingival recession, quality of life and/or patient satisfaction among healthy adult patients undergoing endodontic surgery. Studies were excluded if they were done on pediatric patients or investigated non-surgical endodontics.

Study Design

This systematic analysis included randomised clinical trials (RCTs), non-randomised trials, prospective cohort studies, case-control studies, and cross-sectional studies that assessed the gingival recession, quality of life and/or patient satisfaction after endodontic surgery with different flap designs. Editorial letters, pilot studies, historical reviews, literature review, in vitro studies and descriptive studies such as case reports and case series were excluded.
Table 1 Studies excluded from the analysis after full-text reading and exclusion criteria

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del Fabbro et al, 2012</td>
<td>Investigated the effect of platelet concentration in endodontic surgery</td>
</tr>
<tr>
<td>Esser et al, 1986</td>
<td>Not written in English</td>
</tr>
<tr>
<td>Kreisler et al, 2004</td>
<td>Investigated the effect of low-level laser laser in endodontic surgery</td>
</tr>
<tr>
<td>Meschi et al, 2018</td>
<td>Investigated the effect of platelet-rich fibrin in endodontic surgery</td>
</tr>
<tr>
<td>Metin et al, 2018</td>
<td>Investigated the effect of low-level laser laser in endodontic surgery</td>
</tr>
<tr>
<td>Payer et al, 2005</td>
<td>Investigated the effect of low-level laser laser in endodontic surgery</td>
</tr>
<tr>
<td>Rixecker et al, 1986</td>
<td>Not written in English</td>
</tr>
</tbody>
</table>

Search and Data Extraction

The following databases were searched to identify all related articles up to November 2019 without language restrictions: PubMed, the Cochrane Central Register of Controlled Trials, Web of Science, and Scopus. Other databases, e.g. EMBASE, OVID, and Google-Scholar, were excluded because they showed the same results. The search strategy included the terms related to PICOS elements. The key words used for the search were ‘endodontic surgery’, ‘periapical/periradicular surgery’, ‘apical surgery’, ‘flap design’, ‘gingival recession’, ‘esthetics’, ‘quality of life’, and ‘patient satisfaction’.

The titles and abstracts of the studies reviewed using the search strategy as well as those from additional sources were screened independently by two reviewers considering the above-mentioned selection criteria. If the title and abstract provided insufficient information, the decision for inclusion was based on full-text screening. All the searched studies were imported to reference management software and checked for duplicates. The full text of eligible studies was retrieved and assessed by two reviewers independently. Any disagreement between the two reviewers was resolved through discussion involving a third reviewer.

Data extraction included: (1) study design; (2) sample size and demographics; (3) intervention: type of flap design used in endodontic surgery; (4) follow-up period; (5) confounding variables; (6) outcomes (primary and secondary).

Quality Assessment

Two reviewers independently assessed the quality of the study methodologies included. For randomised clinical trials, the Cochrane Collaborations Risk Bias Tool was used. The following domains were assessed: a sequence generation, allocation concealment, building of outcome assessors, incomplete outcome data, selective reporting and other biases. Studies with low or unclear risk of bias were to be included in the meta-analysis. The authors of the included studies were contacted for clarification, if required. Nonrandomised clinical studies were assessed using the Newcastle Ottawa Scale (NOS), and studies with good methodology (more than five stars on the NOS) were eligible for meta-analysis.

Meta-analysis was performed using random models and all statistical analyses were undertaken using Review Manager v 5.1 (Nordic Cochrane Centre, Cochrane Collaboration, 2001). At least ten studies should be included in a meta-analysis to assess the publication bias. Statistical heterogeneity was assessed by inspecting a graphic display of the estimated exposure effects from individual trials, with associated 95% confidence intervals. Heterogeneity was quantified using I^2, in which values above 50% indicate moderate to high heterogeneity, which might preclude meta-analysis. A weighted treatment effect was to be calculated, and the results for gingival recession were expressed as mean differences.

RESULTS

Study Identification

The initial search identified 2701 references in the electronic databases: 1440 from PubMed, 951 from the Cochrane library, 253 from Web of Science, and 57 from Scopus. The literature search was restricted to these search engines as the exploration of the others produced same articles. The manual search on the topic yielded no additional relevant articles. After removing duplicates, 1600 references were eligible for title screening. Seventy-three references were eligible for inclusion based on their abstracts, and 17 references were subject to full-text evaluation (Fig 1). Following the full-text evaluation, seven articles were excluded.

The reasons for exclusion are summarised in Table 1. Eventually, ten articles – two randomised clinical trials (RCTs) and eight non-randomised clinical studies – were subjected to data extraction, quality assessment, data synthesis and analysis. Using the Kappa
Table 2 Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>Country</th>
<th>Sample Size (n)</th>
<th>Type of flaps</th>
<th>Outcomes/outcome measures</th>
<th>Follow-up duration</th>
<th>Confounder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grunig, 1973</td>
<td>NRCT</td>
<td>Denmark</td>
<td>n=19</td>
<td>Marginal incision</td>
<td>Amount of recession Plaster model</td>
<td>3 Mo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GR more with marginal incision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vekart et al, 2003</td>
<td>NRCT</td>
<td>Switzerland</td>
<td>n=12</td>
<td>1. Papilla-based incision 2. Sulcular incision</td>
<td>Amount of recession Plaster model</td>
<td>1 Mo</td>
<td>Cold compress NSAI D 0.2% CHX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vekart et al, 2004</td>
<td>NRCT</td>
<td>Switzerland</td>
<td>n=12</td>
<td>1. Papilla-based incision 2. Sulcular incision</td>
<td>Amount of recession Plaster model</td>
<td>12 Mo</td>
<td>NSAI D 0.2% CHX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Von Arx et al, 2007</td>
<td>Prospective case series</td>
<td>Switzerland</td>
<td>185 teeth</td>
<td>1. Sulcular incision (n=125) 2. Papilla-based incision (n=30) 3. Submarginal incision (n=30)</td>
<td>Amount of recession Clinical measurement using periodontal probe</td>
<td>12 Mo</td>
<td>NSAI D 0.2% CHX, Smoking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kreisler et al, 2009</td>
<td>NRCT</td>
<td>Germany</td>
<td>n=81</td>
<td>1. Sulcular incision (n=65) 2. Submarginal incision (n=33)</td>
<td>Amount of recession Clinical measurement using periodontal probe</td>
<td>6 Mo</td>
<td>NSAI D Glucocorticoid Antibiotics</td>
</tr>
<tr>
<td>Del Fabbro et al, 2009</td>
<td>RCT</td>
<td>Italy</td>
<td>n=40</td>
<td>1. Sulcular incision (n=19) 2. Papilla-based incision (n=19)</td>
<td>1. Pain 2. Swelling 3. Functional activities: chewing, talking, sleeping, phonetics, daily routine, missed work, bleeding, nausea, bad taste and breath Questionnaire Pain: (VAS) scale Others: 5-point Likert type scale</td>
<td>Daily for 7 days</td>
<td>0.2% CHX Ice pack NSAI D Smoking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taschier et al, 2014</td>
<td>NRCT</td>
<td>Italy</td>
<td>n= 24 >18Y</td>
<td>1. Papilla-based incision (n=10) 2. Sulcular incision (n=10)</td>
<td>1. Amount of recession determined by comparing to pre-operative resin model</td>
<td>2 weeks</td>
<td>0.2% CHX NSAI D Smoking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taschier et al, 2016</td>
<td>NRCT</td>
<td>Italy</td>
<td>n= 24 >18Y</td>
<td>1. Papilla-based incision (n=10) 2. Sulcular incision (n=11)</td>
<td>1. Amount of recession determined by comparing to pre-operative resin model</td>
<td>12 Mo</td>
<td>0.2% CHX NSAI D Smoking</td>
</tr>
</tbody>
</table>
The statistic, inter-observer agreement regarding article selection was $\kappa = 0.85$, indicating perfect agreement between the reviewers. Table 2 summarises the characteristics of the studies included. All studies were conducted in Europe, except one of Asian origin. All studies were clinical trials with sample sizes ranging from 12 to 81 patients, including both males and females. The lower age limit of patients in all studies was 18 years, except in two studies, with two under 18 years and another that did not mention the age. Five articles drew comparisons between papilla-based incisions and sulcular (marginal or intra-sulcular) incisions. Two articles compared the submarginal incision with the sulcular (marginal or intra-sulcular) incision. One study compared three types of incision: papilla-based, submarginal, and sulcular. One study evaluated the marginal incision without a control group and another study compared gingival flap with semilunar flap without mentioning the type of incision. Follow-up periods ranged from 1 h to 7 days in studies that assessed the quality of life, and from 0 to 12 months in studies that evaluated the gingival recession. Five studies discussed preoperative medication, such as analgesics, 0.2% chlorhexidine, antibiotics, or corticosteroid supplements. Seven studies reported postoperative, care including cold compresses, analgesics, 0.2% chlorhexidine, and antibiotics. Four studies reported smoking before surgery as a confounding factor.

The extracted data demonstrates the amount of recession after surgical endodontic treatment using either a cast model or clinical examination. Data also revealed OHRQoL measurement using the VAS or the 5-point Likert scale.

Risk of Bias Quality Assessment

Two randomised clinical trials were assessed using the Cochrane Collaboration’s Risk of Bias tool. The random sequence generation was adequately performed in one study. The assessor was not adequately blinded in either trial. Overall, both randomised clinical trials were judged to have a high risk of bias and could not be included in the meta-analysis (Table 3).

The 8 included nonrandomised clinical trials studies were qualitatively analysed using the Newcastle-Ottawa Quality Assessment scale. According to the methodological quality assessment, one study was judged to be poor quality, whereas the other five studies were considered good quality (Table 4). In the selection category of the Newcastle-Ottawa Quality Assessment scale, the author should mention if the participants represented the community. This analysis found that the participants did not represent the whole community in any of the enrolled articles due to the surgical intervention. All articles except one reported that both groups were drawn from the same community. All articles used surgical records. All articles except two stated that the outcomes of interest – gingival recession or OHRQoL – were not mentioned in the study.

For the comparability parameter, only two studies were comparable. These two studies reported the control for age, sex, and marital status, as well as other confounding factors, such as smoking. For the outcome category, all studies except one assessed outcomes through clinical examination. Follow-up reports were completed for all papers, except for two articles reporting over a period less than six months (cut-
Table 3 Risk of bias summary: review authors’ judgments about each risk of bias item for each included randomised controlled clinical trial

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Selective reporting</th>
<th>Blinding (participants and personnel)</th>
<th>Blinding (outcome assessment)</th>
<th>Incomplete outcome data</th>
<th>Other sources of bias</th>
<th>Overall risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del Fabbro et al, 2009</td>
<td>●</td>
<td>?</td>
<td>●</td>
<td>●</td>
<td>?</td>
<td>●</td>
<td>●</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 4 Risk of bias summary: review authors’ judgments about each risk of bias item for each included non-randomised controlled clinical trial

<table>
<thead>
<tr>
<th>Study</th>
<th>Selection</th>
<th>Comparability</th>
<th>Outcome</th>
<th>Overall score, Newcastle-Ottawa scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grung, 1973</td>
<td>●</td>
<td>*</td>
<td>*</td>
<td>2 stars</td>
</tr>
<tr>
<td>Velvart et al, 2003</td>
<td>●●</td>
<td>●</td>
<td></td>
<td>5 stars</td>
</tr>
<tr>
<td>Velvart et al, 2004</td>
<td>●</td>
<td>●●</td>
<td></td>
<td>6 stars</td>
</tr>
<tr>
<td>Von Arx et al, 2007</td>
<td>●</td>
<td>●●</td>
<td></td>
<td>6 stars</td>
</tr>
<tr>
<td>Kreisler et al, 2009</td>
<td>●</td>
<td>●●</td>
<td></td>
<td>6 stars</td>
</tr>
<tr>
<td>Taschier et al, 2014</td>
<td>●</td>
<td>●●●</td>
<td>*</td>
<td>8 stars</td>
</tr>
<tr>
<td>Taschier et al, 2016</td>
<td>●</td>
<td>●●●</td>
<td>*</td>
<td>8 stars</td>
</tr>
<tr>
<td>Dimova et al, 2016</td>
<td>●</td>
<td>●</td>
<td></td>
<td>3 stars</td>
</tr>
</tbody>
</table>
off). All articles reported complete follow-up of all subjects enrolled in the study, or ≤ 20% of “lost to follow-up”, except two articles13.19 which did not mention that.

Primary Outcome: The Impact of Incision Type on Patient Satisfaction Including Gingival Recession

Gingival recession was evaluated in 8 articles,2,19,27,46,47,53,54,56 Clinically evaluation was performed using a periodontal probe2,3,27 or using study models.19,54 Velvart et al54 reported that gingival recession was statistically significantly greater in sulcular incisions compared to papilla-based incisions after post 1 month, 3 months,54 and 12 months53 (SI: 0.98 ± 0.75 mm; PBI: 0.06 ± 0.21 mm at 12 months) using a plaster cast. Taschieri et al47 reported that gingival recession was statistically significantly greater in sulcular incisions compared to papilla-based incisions over a period of 2 weeks.47 However, there was no statistically significant difference between the two groups over 6 months47 and 12 months,46 (SI: 0.10 ± 0.32 mm; PBI: 0.05 ± 0.15 mm at 12 months) as shown by reference to a custom-made resin model prepared before the surgery. Two more studies reported that gingival recession is statistically significantly greater in sulcular incisions compared to submarginal incisions at 6 months (SI: 0.5 ± 1.1 mm, submarginal: 0.3 ± 0.6 mm)27 and 12 months (SI: 0.42 ± 0.69 mm, submarginal: 0.05 ± 0.61 mm)56 according to clinical examination and using a periodontal probe. Ahmed et al2 reported more recession with sulcular incisions using either Smith’s recession index or a plaster model, respectively.

Secondary Outcome: The Impact of Incision Design on Quality of Life

OHRQoL was assessed in three of the included studies2,11,13 Two studies found more pain associated with the sulcular incision design compared to other incision types.2,11 Del Fabbro et al11 assessed the level of pain and drug intake, swelling, and chewing ability using the VAS and 5-point likert scale. They concluded that the quality of life was significantly higher in the papilla-based incision group compared to that of the sulcular incision group. The pain level and drug intake were statistically significantly less on the third day in the papilla-based incision group (VAS: 55) compared to the sulcular incision group (VAS: 75). Severe swelling was reported on the first two days in only 5.3% with papilla-based incisions, compared to 57.9% with sulcular incisions. Severe chewing impairment was reported on the first two days in only 26.3% with papilla-based incisions vs 57.9% with sulcular incisions. Using the VAS, Ahmed et al2 reported that pain was statistically significantly higher with sulcular incisions (58.4 ± 4.8) than with submarginal incisions (55.3 ± 3.31). Dimova et al13 compared two flap designs and reported that the semilunar flap caused less postoperative pain, but more difficulty in mouth opening, mastication, and ability to speak, compared to the gingival flap design.

Quantitative Analysis (Meta-analysis)

The two eligible studies27,56 deemed to be of high methodological quality and of low risk of bias were included in the meta-analysis. A forest plot was constructed in relation to the gingival recession. Two studies27,56 showed considerable gingival recession associated with the sulcular incision design (p = 0.002). Figure 2 reveals the forest plot of differences in gingival recession between sulcular and submarginal incisions. Subjects with submarginal incisions showed a favourable outcome; the mean difference in the gingival recession was 0.31 mm (0.12 – 0.51), and no heterogeneity was found between these studies (Q = 0.64, df = 1, p = 0.42, I² = 0%).

DISCUSSION

Evidence-based dentistry encourages systematic analysis of scientific evidence by clarifying or reviewing controversial dental issues.42 The current study is a systematic review of evidence, assessing the impact of incision designs on gingival recession, patient satisfaction, and quality of life following endodontic surgery.

Ten articles reporting clinical trials that fulfilled the inclusion criteria were identified. Only two studies assessed the impact of flap designs on the quality of life and found more pain associated with the sulcular incision design. The results based on meta-analysis found statistically significant gingival recession associated with the sulcular incision de-
sign: it was observed to increase the risk of gingival recession and decrease the patients’ quality of life more than other types of incisions.

The factors responsible for postoperative gingival recession are not fully understood. There are patient-related and clinician-related factors. Patient’s pre- and post-surgical oral hygiene, quality of periodontal tissues such as the shape of the gingival papilla, size of the lesion, and healing potential might influence surgery outcomes. Moreover, a full-thickness flap allows complete mobilisation of interden- tal papilla, causing papillary damage and necrosis of tissues due to insufficient blood supply. Insufficient adaptation of the papilla to the underlying bone at the time of flap re-approximation is considered to cause gingival recession. Additionally, the force levels applied during flap reflection are reported to have a negative influence on the gingival margin. Velvar et al. reported that scalpel size, needle size, type of suture material, number of sutures placed and day of suture removal may also increase the risk of gingival recession. Hence, the majority of the factors responsible for post-surgical gingival recession may be unrelated to the flap design.

All the flap incisions showed that factors such as age, gender, smoking, site of operation and size of the lesion had no influence on the gingival recession. One study reported no significant difference between non-smokers and smokers. In contrast, few studies reported conflicting results regarding the effect of smoking on postoperative pain and swelling. This variation could be due to the differences in periodontal and endodontic surgeries. Periodontal surgery involves healing of inflamed epithelial tissue by secondary intention, in contrast to apical surgery. A review by Duncan et al. reported no specific relationship between smoking and surgical endodontics.

OHRQoL is associated with functional factors, psychological factors, social factors, and the experience of pain. This study focuses on postsurgical complications such as pain, swelling, and impaired chewing, as well as esthetic outcomes. Poor preoperative oral hygiene may negatively impact the severity of pain and swelling following periapical surgery. However, one study found no statistically significant influence of the above-mentioned factors. Modern endodontic surgery involves the use of magnifying lenses during the handling of soft tissues, facilitating successful treatment and OHRQoL.

The criterion of conducting a 7-day follow-up for OHRQoL and one of at least 12 months for gingival recession was considered. All measures showed statistically significant changes in the OHRQoL during the first five postoperative days. The maximum pain intensity was recorded on the day of the operation. It started 3 to 5 hours after surgery and continued the whole day. In contrast, some authors have found maximum pain intensity on the day following surgery for three consecutive days. Goldman et al. described the creeping of the gingival tissue, which occurs between a month and a year after periodontal surgery, with no significant changes after a year.

This systematic review had some limitations. First, the nonrandomised design in eight studies had a significant bias, although both groups were statistically compared at baseline. Limiting the variability between the groups with the clinical trials increases the risk of bias. Second, the sample size in all considered studies was relatively small, although sample size calculations were done. Operator experience should be a significant factor, especially when evaluating the external validity. Finally, outcomes pertaining to gingival recession measurement and OHRQoL, as well as duration of follow-up, were variable. More well-constructed studies with low risk of bias and a larger sample size are needed in the future to provide definitive clinical guidance.

CONCLUSIONS

This review is the first to discuss the effect of flap incision on gingival recession and OHRQoL following endodontic surgery. It was concluded that sulcular incisions may have an unfavourable impact, with gingival recession statistically significantly associated with sulcular incision and reduced oral health related quality of life.

REFERENCES

15. Esser E, Montag H, Stürmer-Schwichtenberg G. Comparative study of peri-
dental health following apicoectomy of the upper anterior teeth. Dtsch Z

Bone loss after full-thickness and partial-thickness flap elevation. J Clin

17. Garcia B, Penarrocha M, Marti E, Gay-Escodad C, von Arx T. Pain and
swelling after periapical surgery related to oral hygiene and smoking. Oral

19. Grung B. Healing of gingival mucoperio斯特al flaps after marginal incision

21. Harris RJ. Creeping attachment associated with the connective tissue with

22. Harrison JW, Jurosky KA. Wound healing in the tissues of the periodon-
tium following periradicular surgery. I. The incisional wound. J Endod

health-related quality of life for public health surveillance. Public Health

24. Inglehart MR, Bagramian RA. Oral Health-Related Quality of Life, Chicago:

periradicular surgery: perioperative predictors for postoperative clinical

27. Kreisler M, Gockel R, Schmidt I, Kühl S, d’Hoedt B. Clinical evaluation of
a modified marginal sulcular incision technique in endodontic surgery.

laser therapy in reducing postoperative pain after endodontic surgery – a
33:38–41.

29. Kwist T, Reit C. Postoperative discomfort associated with surgical and non-

30. Levin MP, Grower MF, Cuthriit DE, Gettier L. The effects of length of sur-
gery on healing of full and partial thickness flaps. J Oral Pathol

31. Martins AG, Andia DC, Sallum AW, Sallum EA, Casati MZ, Nociti Junior PH.
Smoking may affect root coverage outcome: a prospective clinical study in

32. Matter J. Creeping attachment of free gingival grafts. A five-year follow-up

33. McGrath C, Bedi R. A review of the influences of oral health on the quality

34. Meschi N, Flews S, Vanhoenacker A, Strijbos O, Van der Veken D, Politis C,
Lambrechts P. Root-end surgery with leucocyte- and platelet-rich fibrin
and an occlusive membrane: a randomized controlled clinical trial on pa-

35. Metin R, Tatlí U, Evlice B. Effects of low-level laser therapy on soft and
hard tissue healing after endodontic surgery. Lasers Med Sci 2018;33:
1699–1706.

36. Mushhtag I, Malik A. Evaluation of the Ochsenbein-Luebke flap technique
in periapical surgery at Punjab Dental Hospital Lahore Pakistan. J Ayub
Medical College, Abbottabad 2003;15:50–53.

effect of LLLT in endodontic surgery: a prospective study on 72 cases. Oral

38. Penarrocha M, Garcia B, Marti E, Balaguer J. Pain and inflammation after
433.

ment of oral health in the 21st century – the approach of the WHO Global

40. Rixecker H, Tetsch P. Marginal and para-marginal incision guides in apico-

41. Scabilla A, Cho KS, Sigurdsson TJ, Kim CK, Trombelli L. Cigarette smoke-
ing negatively affects healing response following flap debridement sur-

42. Schulz K, Altman D, Moher D. CONSORT 2010 statement: updated guide-
lines for reporting parallel group randomized trials. Ann Intern Med

43. Sischo L, Broder H L. Oral health-related quality of life: what, why, how,

44. Smith RG. Gingival recession. Reappraisal of an enigmatic condition and

45. Staffileno H, Significant differences and advantages between the full-

46. Taschieri S, Del Fabbro M, Franchetti L, Peronadi I, Corbella S. Does the pa-
pilla preservation flap technique induce soft tissue modifications over

47. Taschieri S, Corbella S, Del Fabbro M. Do gingival soft tissues benefit
from the application of a papilla preservation flap technique in endodon-

48. Trombelli L, Cho KS, Kim CK, Scapoli C, Scabbia A. Impaired healing re-
sponse of periodontal furcation defects following flap debridement sur-
81–87.

symptoms following surgical endodontic treatment. Quintessence Int
2003;34:756–760.

of quality of life after surgical endodontic treatment using two tech-

Endod 2005;31:4–16.

52. Velvart P. Papilla base incision: a new approach to recession-free healing
of the interdental papilla after endodontic surgery. Int Endod J 2002;35:
453–460.

healing following sulcular full thickness flap and papilla base flap in endo-

54. Velvart P, Ebner-Zimmermann U, Ebner JP. Comparison of papilla healing
following sulcular fullthickness flap and papilla base flap in endodontic

55. Von Arx T, Jensen SS, Hanni S. Clinical and radiographic assessment of
various predictors for healing outcome 1 year after periapical surgery. J

56. Von Arx T, Vinzens-Majaniemi T, Burjgin W, Jensen SS. Changes of peri-
odental parameters following apical surgery: a prospective clinical study

58. Wood DL, Hoag PM, Donnenfeld OW, Rosenfeld LD. Alveolar crest reduction

doi: 10.3290/j.ohpd.b1176847