Characterization and Anti-Caries Effect of an Experimental Adhesive Containing Natural Antimicrobial Agents

Rachel Cavalcanti Ribeirol, Eduardo Moreira Silvab, Carina Mattos de Carvalhoc, Maria Elisa da Silva Nunes Gomes Miranda, Maristela Barbosa Portela, Cristiane Mariotte Amaral

Purpose: To characterize experimental adhesives containing natural antimicrobial agents (proanthocyanidins, apigenin, tt-farnesol) in the primer and to evaluate their anti-caries effect.

Materials and Methods: Natural agents were incorporated in the primer of an experimental adhesive: 4.5% proanthocyanidins (PA), 1 mM apigenin (API), 1 mM apigenin + 5 mM tt-farnesol (API + FAR), and primer without antimicrobial agent (control). Microtensile bond strength (μTBS) to dentin and nanoleakage were measured immediately (n = 7) and after 1 year of storage (n = 7). Water sorption (WS), solubility (SO), and degree of conversion (DC%) of the adhesives were measured. The hardness loss of enamel (n = 6) and dentin (n = 6) at the restorative margin was evaluated after biofilm formation.

Results: DC%, nanoleakage, and immediate μTBS were similar for all groups. After 1 year, API + FAR showed higher nanoleakage and lower μTBS than the other groups, which were similar. WS and SO of API + FAR were lower than in the other groups. PA, API, and API + FAR presented less hardness loss than did the control group. At enamel, PA and API presented less hardness loss than the control and API + FAR groups at distances 50 μm and 100 μm; the hardness loss of enamel was similar for all groups 150 μm from the margin.

Conclusion: The addition of proanthocyanidins and apigenin to the adhesives decreased the hardness loss of dentin and enamel submitted to biofilm formation, without jeopardizing the physical properties of the adhesives. The combination of apigenin + tt-farnesol decreased the hardness loss of dentin but not of enamel, and decreased the μTBS after 1 year of storage.

Keywords: adhesion, adhesive systems, apigenin, proanthocyanidins.

J Adhes Dent 2021; 23: 527–537. doi: 10.3290/jjad2287719
Submitted for publication: 16.06.20; accepted for publication: 22.05.21

Resin composites are widely used as direct filling materials for tooth restorations. However, secondary caries is the main cause of failure of these restorations, due to the deposition of biofilm and formation of gaps at the restoration margins. Thus, the control of biofilm formation without changing the ecological balance is essential for the prevention of secondary caries and to increase the longevity of the restoration.

Bacterial resistance to antimicrobials represents a worldwide problem. Therefore, new strategies and new drugs are constantly being explored. Natural products are a little-explored source of non-toxic anti-biofilm agents, which can be used in combination with fluoride as an alternative to broad-spectrum antimicrobials, such as chlorhexidine. Streptococcus mutans is a factor influencing caries development, as a result of its virulence associated with its ability to produce extracellular polysaccharides (EPS) and weak acids from sucrose, in addition to its ability to adapt to large fluctuations in pH, oxygen tension, and nutrient availability. The EPS matrix acts as a framework for the biofilm, provides...
binding sites, is a source of sugar, and creates an acidic environment. The EPS matrix consists mainly of glucans synthesized by microbial glycosyltransferases (Gtfs). Thus, a fundamental means of controlling the formation of biofilm would be to inhibit the function of these enzymes.\textsuperscript{16,22,25,35}

In recent years, the anti-biofilm activity of polyphenols has been demonstrated.\textsuperscript{16,22,34,40,43,47} Grape seed extract (GSE) and cranberries are rich in these compounds, which consist mainly of the free monomeric flavanols such as proanthocyanidins.\textsuperscript{16,35,47} GSE has been shown to biomodify dentin matrices, increasing and stabilizing their mechanical properties due to their effects on the biochemistry of collagen and interactions with proteoglycan.\textsuperscript{13,14,17,29} Proanthocyanidins can also improve the preventive and reparative abilities of dentin,\textsuperscript{4,7} because they positively affect the demineralization-remineralization processes in artificial caries lesions,\textsuperscript{34,40} in root dentin,\textsuperscript{38,46} and in enamel.\textsuperscript{1} Proanthocyanidins have the ability to suppress the formation and growth of S. mutans biofilms without exhibiting bactericidal effects.\textsuperscript{16,22,47} Proanthocyanidins bind to proteins and form protein-polyphenol complexes that can affect enzymatic activity by irreversibly binding to the glucan-binding domain.\textsuperscript{1,16,21,22,40,47}

Propolis is a non-toxic and relatively unexplored resinous substance produced by honeybees (Apis mellifera). Two compounds derived from propolis, apigenin and tt-farnesol, are potential anti-caries agents that do not exert a significant effect on oral microbiota viability\textsuperscript{2,6,23-25} and do not influence dentin bonding.\textsuperscript{2} The incorporation of both into a dental restorative material could be beneficial, especially in areas with higher biofilm accumulation, such as interproximal and cervical regions.\textsuperscript{2} The way by which apigenin and tt-farnesol affect the cariogenicity of S. mutans is based on the synthesis of glucan, the inhibition of EPS accumulation, the production of acids, and the inhibition of biofilm formation.\textsuperscript{2,6,23-25}

The incorporation of proanthocyanidins, apigenin, and tt-farnesol into an adhesive could help prevent secondary caries. Thus, the aim of this study was to characterize an experimental adhesive containing natural antimicrobial substances (proanthocyanidins, apigenin, tt-farnesol) in the primer and to evaluate its effect on the prevention of secondary caries in enamel and dentin. The hypotheses tested were: 1. adhesives containing natural antimicrobials affect the degree of conversion, water sorption, solubility, bond strength to dentin, and nanoleakage (immediate and after one year); and 2. adhesives containing natural antimicrobials exert an anti-caries effect in enamel and dentin.

**MATERIALS AND METHODS**

For this in vitro study, an experimental two-bottle etch-and-rinse adhesive was used, containing the following natural antimicrobial agents in the primer: 4.5% proanthocyanidins,\textsuperscript{9} apigenin at 1 mM and the combination of apigenin at 1 mM + tt-farnesol at 5 mM.\textsuperscript{2} Thus, 4 groups were formed: no added antimicrobial agents (control), addition of 4.5% proanthocyanidins (PA), addition of apigenin 1 mM (API), and addition of apigenin 1 mM + tt-farnesol 5 mM (API + FAR). The composite, Filtek Z250 (3M Oral Care; St Paul, MN, USA), was used as the restorative material. The composition of these materials is shown in Table 1. The compounds of adhesives were mixed using a dual centrifuge (150.1 PVZ Speed Mixer DAC, Flack Tek; Herrliberg, Germany) for 2 min at 1300 rpm.

The powdered grape seed extract containing 95% proanthocyanidins was dissolved in ethanol at 30% (w/w). After magnetic agitation (Quimis, Diadema; SP, Brazil) for 30 min and 72 h of storage in a closed container, the solution was filtered (paper filter n. 6c) and used as solvent in group PA, until reaching a concentration of 4.5% of proanthocyanidins in the primer.\textsuperscript{9}

**Adhesive Characterization**

**pH assessment of the primers**

Three ml of each primer was dispensed into clean glass vials and agitated for 30 s. The pH was measured in triplicate using a pH meter (Seven Compact pH/ION, Mettler Toledo; Columbus, OH, USA) at room temperature, and the mean of these three values was used as the pH for each material.

**Microtensile bond strength to dentin (µTBS) and nanoleakage evaluation**

Fifty-six extracted, caries-free, human third molars (Ethics Committee Approval HUAP CAAE: 17552319600005243) were disinfected in a 0.5% chloramine-T aqueous solution (Vetec Quimica Fina; Rio de Janeiro, RJ, Brazil) for 7 days, then stored in distilled water and used within six months after extraction. The µTBS measurement was performed as previously described.\textsuperscript{8} The occlusal dentin of the teeth was exposed using a cutting machine (IsoMet 1000, Buehler; Lake Bluff, IL, USA) and the peripheral enamel removed using a diamond bur #4138 (KG Sorensen; Cotia, SP, Brazil). The dentin smear layer was standardized using #400 and #600-grit SiC papers (Arotec; Cotia, SP, Brazil) in a polishing machine (DPU 10, Struers; Ballerup, Denmark) for 1 min each. The teeth were divided into 4 groups (n = 7) according to the antibacterial agent used (control, PA, API, and API + FAR) and two storage time intervals: immediate and after 1 year of storage.

Dentin surfaces were conditioned with 37% phosphoric acid for 15 s, rinsed with water for 30 s, and dried with absorbent paper. The primer was actively applied for 10 s, followed by a gentle air stream for 5 s at a distance of 15 cm. The adhesive was applied and light cured for 20 s at an irradiance of 650 mW/cm² (Radii-Cal SDI; Bayswater, Victoria, Australia). Five 1-mm-thick increments of microhybrid resin composite were horizontally added to the bonded surfaces and individually light cured for 40 s at an irradiance of 650 mW/cm².

After storage in distilled water at 37°C for 24 h, the teeth were longitudinally sectioned in both the mesio-distal and buccal-lingual directions across the bonded interfaces, yielding sticks with a cross-sectional area of approximately 1 mm². Each tooth provided 15 to 22 sticks. Two sticks obtained from each tooth were set aside for the nanoleakage test.

After each storage time (24 h or 1 year), the cross-sectional area of each stick’s adhesive interfaces were mea-
Table 1  Materials used in this study

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition (% in weight)</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental adhesive</td>
<td>Primer: 35% ethanol, 40% HEMA, 20% PMGDM, 4% water, 0.5% camphorquinone, 0.5% EDMAB</td>
<td>Sigma-Aldrich; St Louis, MO, USA</td>
</tr>
<tr>
<td></td>
<td>Adhesive: 70% bis-GMA, 29% HEMA, 0.5% camphorquinone, 0.5% EDMAB</td>
<td></td>
</tr>
<tr>
<td>Filtek Z250</td>
<td>Bis-EMA, bis-GMA, TEG-DMA, UDMA, zirconia/silica with 0.01 to 3.50 μm and 60% in loading particles</td>
<td>3M Oral Care; St Paul, MN, USA</td>
</tr>
<tr>
<td>Grape seed extract</td>
<td>95% proanthocyanidin (4.5 w/w%)</td>
<td>Active Pharmaceutical; Palhoça, SC, Brazil.</td>
</tr>
<tr>
<td>Apigenin</td>
<td>Apigenin (1mM)</td>
<td>Sigma-Aldrich; St Louis, MO, USA</td>
</tr>
<tr>
<td>tt-farnesol</td>
<td>Tt-farnesol (5mM)</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

HEMA: 2-hydroxyethyl methacrylate; PMGDM: pyromellitic dianhydride glycerol dimethacrylate; TEG-DMA: triethylene glycol dimethacrylate, EDMAB: ethyl 4-dimethyaminobenzoate; bis-EMA: bisphenol A diglycidyl methacrylate; bis-GMA: bisphenol A-glycidyl methacrylate; UDMA: urethane dimethacrylate.

suured using a digital caliper, then the specimens were individually fixed to a microtensile bond-strength device (ODMT03d, Odeme Biotechnology; Joaçaba, SC, Brazil) using cyanoacrylate glue (Superbonder Gel 3M; São Paulo, SP, Brazil) and loaded under tension in a universal testing machine (EMIC DL 2000; São José dos Pinhais, SP, Brazil) at a cross-head speed of 1.0 mm/min until failure occurred. The μTBS (MPa) was obtained by dividing the load at failure (N) by the cross-sectional area of the stick (mm²). Each failed stick was evaluated using a stereomicroscope (SZ40; Olympus, Tokyo, Japan) at 40X magnification, and the failure mode was classified as: adhesive (debonding at the adhesive interface), cohesive (debonding occurring mainly within dentin or resin composite), or mixed (mixture of adhesive and cohesive failure within the same fractured surface). Additionally, representative fractured sticks exhibiting different failure modes and with μTBS close to the mean of each group were observed using confocal laser microscopy (LEXT OLS4001, Olympus; Tokyo, Japan) operating in scanning mode XYZ fast scan, using a MPLAPONLEXT 50 lens at 1.4X zoom. The images were taken at 1024 x 1024 image size (pixels).

After storing (immediate or 1 year), two sticks of each tooth were prepared for the nanoleakage test as previously described. The sticks received two layers of nail varnish up to 1 mm from the bonding interface on both sides and were individually immersed in 50 wt% ammoniacal silver nitrate solution (pH = 7.0) in a dark environment for 24 h. Each stick was thoroughly rinsed in running water and then immersed in a photodevoping solution (Kodak; Rochester, NY, USA) under fluorescent light for 8 h, to reduce the silver ions into metallic silver grains at the bonding interface. Afterwards, the surfaces were wet polished using 600-grit, 1200-grit, and 4000-grit silicon carbide paper, ultrasonically cleaned in water for 10 min (Ultrassom 750 USC, Quimis; Rio de Janeiro, Brazil), and dried for 48 h in a desiccator with blue silica gel at 37°C.

The adhesive/dentin interfaces were observed using scanning electron microscopy (SEM) (Phenom ProX, Phenom-World BV; Eindhoven, the Netherlands), at an accelerating voltage of 15 kV, backscattered mode, and using a charge reduction sample holder (low vacuum environment). Three images were registered for each stick, essentially evaluating the entire adhesive interface: two images from both ends (right and left sides) and one central image (magnification: 2000X). In these three images, the amount of silver nitrate uptake in the hybrid layer was registered as a percent-
Degree of conversion (DC%) of the primers

Increments of each experimental primer were inserted into a Teflon mold (0.785 mm³) positioned on the ATR crystal of an FT-IR spectrometer (Alpha-P/Platinum ATR Module, Bruker Optics; Ettlingen, Germany), and the spectra between 1500 and 1800 cm⁻¹ were recorded with the spectrometer operating with 40 scans and a resolution of 4 cm⁻¹.

Afterwards, the increments were light cured for 40 s at an irradiance of 650 mW/cm², and the spectra were recorded exactly as was performed for the unpolymerized increments. Five samples of each primer of the adhesives were evaluated (n = 5). The DC% was calculated as the ratio of the integrated area of absorption bands of the aliphatic C=C bond (1638 cm⁻¹) to that of aromatic C=C bond (1608 cm⁻¹), used as an internal standard, obtained from the cured and uncured films, using the following equation:

\[ DC\% = 100 \times \frac{1 - (R_{\text{polymerized}} / R_{\text{unpolymerized}})}{2} \]

where R = integrated area at 1638 cm⁻¹/integrated area at 1608 cm⁻¹.

Water sorption (WS) and solubility (SO) of the primers

Antimicrobial substances were added to the adhesive primers. Then, only WS and SO of the primer of each group was evaluated. These methodologies were based on the ISO 4049 Standard (2000); however, the period of immersion was prolonged until a constant mass was achieved.

Before building up the specimens, the solvent of each primer was evaporated. The primers (3 ml) were dispensed into a container (5.0 cm in diameter and 1.0 cm deep) on an analytical balance with a precision of 0.01 mg, which was protected from ambient light to prevent premature polymerization. The initial mass was recorded and the specimens remained on the analytical balance until they reached mass equilibrium. Then, disk-shaped specimens were prepared using an aluminum mold (6.0 mm in diameter and 1.0 mm thick). A micropipette was used to dispense the adhesive phases directly into the mold. After filling the mold completely, all visible air bubbles were carefully removed with a hypodermic needle. Then a polyester strip and glass slide were placed on top of the mold and the disks were light cured at an irradiance of 650 mW/cm² for 40 s. The disks were removed from the mold and light cured from the bottom for 40 s. The top and bottom surfaces of all disks were manually polished using 4000-grit SiC abrasive paper to eliminate any surface irregularities. Twenty disks were produced and assigned to four groups (n = 5).

Immediately after polymerization, the disks were placed in a desiccator containing dehydrated silica gel, and transferred to an oven (Q316B15, Quimis) at 37±1°C. The disks were weighed daily using an analytical balance with 0.01 mg precision until a constant mass was attained (m₁) for three consecutive days with a mass variation under 0.01 mg. The thickness and diameter of each disk were measured at four points using a digital caliper (MPI/E-101, Mitutoyo; Tokyo, Japan), and the volume (V) was calculated in mm³. The specimens were then individually placed in sealed glass vials containing 10 ml of distilled water at 37°C. The immersion medium was renewed every seven days to prevent the proliferation of fungi and bacteria. The disks were repeatedly weighed at 24-h intervals until a constant mass was attained (m₂) for three consecutive days with a mass variation of less than 0.01 mg. Before weighing, the specimens were gently wiped with soft, absorbent paper. The specimens were again put into a desiccator containing fresh silica gel, maintained in a pre-conditioning oven at 37°C, and weighed daily until a constant mass was obtained (m₃). WS and SO in mg/mm³ were calculated using the following formulae:

\[ WS = \frac{(m_2 - m_3)}{V} \]
\[ SO = \frac{(m_1 - m_3)}{V} \]

where m₁ is the disk mass (mg) after drying, m₂ is the disk mass (mg) at equilibrium uptake (maximum sorption), m₃ is the mass (mg) of the re-dried disk and V was the disk volume (mm³).

Assessment of Caries Inhibition

Cavity preparation

Twenty-four extracted, caries-free, human third molars (Ethics Committee Approval HUAP CAAE 17552319600005243) were disinfected in a 0.5% chloramine-T aqueous solution for 7 days, then stored in distilled water. The roots were removed at the cementoenamel junction using high-speed diamond burs. The crowns were sectioned in the vestibular-lingual direction forming 2 fragments for each tooth. The proximal enamel surface of one fragment of each tooth was ground flat with sandpaper disks in a polishing machine (DPU 10, Struers), while the other fragment was polished until the dentin was exposed (#320, #600, and #1200-grit SiC). In this way, 24 fragments of the enamel surface and 24 fragments of the dentin surface were obtained. Standardized cavities (2 mm x 2 mm x 2 mm depth) were prepared at the center of each fragment using #2292 diamond burs (KG Sorensen; Barueri, SP, Brazil) in a high-speed handpiece fixed in a standardization machine. After that, the prepared specimens were randomly divided into four groups for enamel (n = 6) and dentin (n = 6), according to the experimental primers tested: control, PA, API, and API + FAR.

In all groups, the enamel or dentin was conditioned with 37% phosphoric acid for 15 s, rinsed with distilled water for 30 s, and blot dried with absorbent paper. The primer was actively applied for 10 s, followed by air drying for 5 s at a 15-cm distance. The adhesive was applied and light cured for 20 s. The composite Filtek Z250 (3M Oral Care; St Paul, MN, USA) was inserted in 2 increments, each of which was light cured for 20 s each. The restorations were polished with #2500 and #4000-grit SiC papers (Arotec; Cotia, SP, Brazil) in a polishing machine.
Initial microhardness of enamel and dentin surfaces

Initial Knoop microhardness (50 g, 10 s, HMV-2000, Shimadzu; Tokyo, Japan) of enamel and dentin surfaces was measured at 50 μm, 100 μm and 150 μm from the restoration margin, with 5 indentations in each line (50 μm from each other) (SMH control). After that, half of the restoration and enamel or dentin margins were covered by two layers of nail varnish to maintain a sound reference surface.  

Biofilm formation

The biofilm model chosen for the experiment was composed of S. mutans. This microorganism plays the main role in the onset and progression of enamel caries and it is commonly found in the oral cavity. 

The specimens were sterilized with ethylene oxide and fixed at the bottom of 24-well plates (24 Zellkultur Festplatte F, TPP; Trasadingen, Switzerland) with the surface of the restorations facing upwards. S. mutans isolate from the American Type Culture Collection (ATCC 25175, Fundação Oswaldo Cruz; Rio de Janeiro, RJ, Brazil) was cultured in brain heart infusion (BHI) broth (Difco; Sparks, NV, USA) supplemented with 2% sucrose at 37°C under anaerobic conditions for 24 h. Afterwards, the bacterial suspension was adjusted to 0.5 in accordance with the McFarland scale at 550 nm using a UV/Vis spectrophotometer (Beckman CoulterDU 530, LifeScience; San Diego, CA, USA). Then, the suspension was diluted 1:100 and 10 μl of this suspension was added to each well, containing a specimen with 2 ml of BHI broth supplemented with 2% sucrose. The 24-well plates were kept for 48 h at 37°C under microaerophilic conditions. During the experiment, the growth medium was changed every 24 h.

Final hardness of dentin and enamel

After the biofilm formation period, samples were removed from the plates and the nail varnish on the reference surfaces was carefully removed with acetone-soaked cotton wool. The final surface microhardness evaluation (SMHf) of enamel and dentin was performed 50 μm away from the initial indentations.

The percentage of hardness change for enamel and dentin was calculated as follows: %Hardness = 100 (SMH1/SMHcontrol)/SMHcontrol

Table 2

<table>
<thead>
<tr>
<th>Groups</th>
<th>Immediate</th>
<th>1 year</th>
<th>DC%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>31.9 (7.7)Aa</td>
<td>27.4 (2.9)Aa</td>
<td>73.4 (10.0)</td>
</tr>
<tr>
<td>PA</td>
<td>27.3 (5.0)Aa</td>
<td>24.9 (4.7)Aa</td>
<td>71.4 (5.7)</td>
</tr>
<tr>
<td>API</td>
<td>25.6 (4.5)Aa</td>
<td>31.6 (2.5)Aa</td>
<td>72.9 (7.7)</td>
</tr>
<tr>
<td>API + FAR</td>
<td>30.6 (4.0)Aa</td>
<td>18.7 (4.6)Ab</td>
<td>67.8 (6.8)</td>
</tr>
</tbody>
</table>

Means followed by different superscript letters (uppercase in columns; lowercase in rows) are statistically significantly different (Tukey’s HSD test, α = 0.05).

* ANOVA showed no significant difference among groups (p = 0.6643).

Statistical Analysis

The data were analyzed using Statgraphics Centurion XVI software (STATPOINT Technologies; Warrenton, VA, USA). The normal distribution of errors and the homogeneity of variances were checked using the Shapiro-Wilk and Levene tests, respectively. Based on these preliminary analyses, DC%, WS, and SO data were analyzed using ANOVA. Nanoleakage, μTBS, and microhardness were analyzed using two-way ANOVA. Tukey’s HSD test was used for multiple comparisons when a statistical difference was detected. All analyses were performed at a level of significance of α = 0.05.

RESULTS

The pH values of each primer were: control: 4.25; PA: 4.10; API: 3.93; API + FAR: 4.29. The means and standard deviation of μTBS and DC% are summarized in Table 2. For the μTBS test, two-way ANOVA showed that the factors “antibacterial agent” (p = 0.0136) and “storage time” (p = 0.0080), as well as the interaction between antibacterial agent and storage time (p = 0.0005), were statistically significant. In the immediate evaluation, μTBS was similar for all groups. API + FAR presented a significant decrease in μTBS after 1-year storage when compared to the immediate evaluation. In the other groups (CONTROL, PA and API), μTBS did not decrease after storage. When groups were compared after 1 year of storage, API + FAR had significantly lower μTBS compared to API and control, but with no difference from PA. PA and API presented μTBS similar to that of the control group. Failure mode analysis after the μTBS test is shown in Fig 1. The failure mode was predominantly adhesive in all groups.

Regarding the DC% data, ANOVA showed no significant difference among groups (p = 0.6643). The incorporation of antimicrobials did not affect the DC% of the experimental adhesives (Table 2).

Results of nanoleakage testing are summarized in Table 3. Two-way ANOVA showed that the factor storage time (p = 0.0000) was statistically significant. The antibacterial agent factor (p = 0.1919) and the interaction between antibacterial agent and storage time (p = 0.0876) were not significant. At the immediate evaluation, nanoleakage was similar for all groups. PA showed no increase in nanoleakage.
Table 3  Means and standard deviation of nanoleakage (% silver) after 24 h and 1 year of storage

<table>
<thead>
<tr>
<th>Groups</th>
<th>Nanoleakage (silver%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immediate (24 h)</td>
</tr>
<tr>
<td>Control</td>
<td>0.9 (1.2)(^a)</td>
</tr>
<tr>
<td>PA</td>
<td>1.1 (1.8)(^a)</td>
</tr>
<tr>
<td>API</td>
<td>0.9 (1.5)(^a)</td>
</tr>
<tr>
<td>API + FAR</td>
<td>0.8 (0.3)(^a)</td>
</tr>
</tbody>
</table>

Means followed by different superscript letters (uppercase in columns; lowercase in rows) are statistically significantly different (Tukey’s HSD test, \(\alpha = 0.05\)).

Age after 1 year of storage when compared to the immediate evaluation. In all other groups (control, API, API + FAR), nanoleakage increased after 1 year of storage when compared to the immediate evaluation. After 1 year of storage, PA presented significantly less nanoleakage when compared to API + FAR, but with no difference to control and API. API and API + FAR showed nanoleakage similar to that of the control group. In Fig 2, representative images of nanoleakage are presented.

With regard to WS and SO (Table 4), ANOVA showed a significant difference between the groups (\(p = 0.0000\) for water sorption; \(p = 0.0000\) for solubility). WS and SO of PA and API did not differ when compared to the control. However, API + FAR showed the lowest WS and the lowest SO when compared to the other groups.

The results of the hardness loss of dentin and enamel are detailed in Tables 5 and 6, respectively. For dentin, two-way ANOVA showed that the factors antimicrobial agent (\(p = 0.0000\)) and distance (\(p = 0.0000\)) were significant. The interaction between antimicrobial agent and distance was not significant (\(p = 0.1081\)). Control specimens showed a significantly greater hardness loss when compared to PA, API and API + FAR at all distances evaluated (50 \(\mu\)m, 100 \(\mu\)m and 150 \(\mu\)m from the margin). In all distances evaluated, PA, API and API + FAR presented inhibition of demineralization (lower hardness loss). At 150 \(\mu\)m from the restoration margin, API showed significantly lower hardness loss when compared to API + FAR and control groups, but this did not differ from PA. When the distances from the restoration margin were compared, all groups presented a significant increase in hardness loss at 100 \(\mu\)m when compared to 50 \(\mu\)m from the margin. With an increase in distance from the margin to 150 \(\mu\)m, no increase in hardness loss was observed for any of the groups when compared to 100 \(\mu\)m from the margin.

Considering the enamel margins, two-way ANOVA showed that the factors antimicrobial agent (\(p = 0.0000\)) and distance (\(p = 0.0000\)) were significant. The interaction between antimicrobial agent and distance was not significant (\(p = 0.2943\)). PA and API presented significantly less hardness loss when compared to control and API + FAR at 50 \(\mu\)m from the margin. At 100 \(\mu\)m from the margins, PA showed significantly less hardness loss when compared to the control and API + FAR groups, but with no difference from API; API and API + FAR did not differ from the control. No significant differences between groups were observed at 150 \(\mu\)m from the margins, showing no effect of antibacterial agents at this distance. When comparing the distances from the margin, control and API + FAR presented similar hardness loss at all distances. PA exhibited significantly greater hardness loss at 150 \(\mu\)m when compared to 50 \(\mu\)m and 100 \(\mu\)m. API presented significantly greater hardness loss at 150 \(\mu\)m when compared with 50 \(\mu\)m, but did not at 100 \(\mu\)m.

![Failure Mode](image-url)
DISCUSSION

In this study, antimicrobial substances were added to an experimental adhesive in order to analyze the real effects of these substances, eliminating the influence of possible unknown ingredients present in commercial adhesives. Moreover, commercial adhesives do not report the exact percentage of each substance. Therefore, an experimental adhesive with a simple formulation and with the necessary characteristics to produce a good interaction with the dental substrate was chosen. HEMA was chosen for the primer because it is a hydrophilic functional monomer commonly used in commercial dentin-bonding agents. Additionally, its great penetration ability makes this water-soluble monomer an excellent adhesion-promoting agent, leading to an increase in immediate bond strengths. PMGDM is a functional monomer that has been used in commercial and in experimental adhesives or modified resin composites. This monomer was chosen to compose the primer, because it offers a tetramethacrylate and two COOH groups with adhesion-promotion potential through ionic interactions with the mineral content of the tooth. Experimental primers with PMGDM and HEMA were used in previous studies. For the adhesive blend, bis-GMA and TEG-DMA was chosen. Bis-GMA is a high-molecular-weight aromatic monomer that improves the mechanical properties of the adhesives; TEG-DMA, a hydrophobic low-molecular-weight monomer, was used as a cross-linking agent. The higher flexibility of TEG-DMA compensates for the rigidity of bis-GMA, and admixture will result in resins with higher conversion rates.

Fig 2  Representative images of nano-leakage observed in SEM. a: control immediate; b: control after 1 year of storage; c: PA immediate; d: PA after 1 year of storage; e: API immediate; f: API after 1 year of storage; g: API + FAR immediate; h: API + FAR after 1 year of storage.
The natural antimicrobial agents proanthocyanidin, api- genin, and tt-farnesol were selected because previous studies have shown that these substances act against S. mutans biofilm through the inhibition of glucan synthesis. However, no other study evaluated the use of these substances incorporated into adhesive in terms of their ability to prevent recurrent caries using the model of restorations submitted to S. mutans biofilm.

In the present study, the substances incorporated into the experimental adhesive did not affect the DC% (67.8% and 73.4%), which is consistent with findings on commercial adhesives. It is likely that the antimicrobial powders at low concentrations do not chemically react with the experimental adhesive formulation, thus not interfering with the propagation of the polymerization reaction and remaining trapped between the linear chains after formation of the adhesive polymer network. These results are in accordance with the study by Dias et al, who showed no differences among DC% of an adhesive containing proanthocyanidins at concentrations of 1%, 2%, 4.5% and 6%, in which the proanthocyanidins were diluted in acetone and filtered with filter paper. In contrast, Green et al demonstrated a reduction of DC% when proanthocyanidins were incorporated into the adhesive, as they observed a more porous hybrid layer. Liu et al observed that the incorporation of 5% or 10% PA caused a reduction of the adhesive’s DC%, while a concentration of 2.5% did not. However, in the study by Green et al, proanthocyanidins were not diluted and filtered as in the present study. In the study by Liu et al the proanthocyanidins were diluted in the solvent, but not filtered. In addition, differences in the monomer composition of the adhesives may cause differences in DC%.
The incorporation of antibacterial agents did not affect either the immediate μTBS or that after 1 year of storage, except for API + FAR. Results ranged from 27.3 to 31.9 MPa and were compatible with values of commercially available adhesives. In a previous study, different concentrations of proanthocyanidins (1%, 2%, 4.5% and 6%) were shown to not affect immediate and long-term μTBS, while the concentration of 4.5% showed greater μTBS after 1 year when compared to the control group. Leme-Krauss et al. found superior adhesive properties for primers with proanthocyanidins both immediately and after 1 year of aging. Castelan et al. investigated the long-term effect of proanthocyanidins on the μTBS of demineralized dentin, and showed that treatment with proanthocyanidins resulted in greater μTBS both after 24 h and 1 year of storage.

However, Epasinghe et al. showed that the incorporation of 3% proanthocyanidins in an experimental adhesive decreased the dentin μTBS. The addition of 3% proanthocyanidins reduced the degree of polymerization, which resulted in lower μTBS and more adhesive failures. This might have occurred because the proanthocyanidins were not diluted and not filtered before adding them to an adhesive. On the other hand, the incorporation of proanthocyanidins at lower concentrations (1% or 2%) provided a reduction of nanoleakage and did not decrease the immediate μTBS. API + FAR did not maintain μTBS after 1 year of storage and presented lower μTBS when compared to the other groups. The same pattern was observed with the results of nanoleakage.

In this study, nanoleakage was quantitatively evaluated by EDS. Three images of each stick were taken to (semi-)quantify the Ag infiltration in the hybrid layer at 2000X magnification. Thus, with greater magnification and three images, a smaller area of dentin subjacent to the hybrid layer, which can take up Ag, was evaluated. Thus, it can be assumed that most Ag infiltration into the hybrid layer was detected.

The lowest μTBS and greater nanoleakage of API + FAR might be explained by the lipid nature and higher molecular weight of tt-farnesol (222.37 g/mol), which might have interfered with the penetration of the adhesive into the dentin tubules. Poor penetration can create a hybrid layer that is less resistant and more susceptible to degradation over time. Andre et al. showed that the addition of apigenin (1 mM), tt-farnesol (5 mM), or a combination of the two, to adhesive systems did not influence the immediate μTBS. However, after 1 year of storage, the results were material dependent: the μTBS for Clearfil S3 Bond Plus (Kuray Noritake; Tokyo, Japan) was not reduced by the incorporation of the substances, whereas the OptiBond (Kerr; Orange, CA, USA) S groups all experienced a reduction in μTBS.

The WS and SO of adhesives were evaluated because these characteristics involve a series of phenomena that may influence a material’s clinical behavior. The polymer chains undergo relaxation, due to swelling caused by the absorbed water, which reduces the frictional forces between the polymeric side chains, causing plasticization of the adhesive polymer network. Unreacted monomers trapped within the network of adhesive polymers can be released into the surrounding medium, creating spaces in the structure of the material. These phenomena reflect a degradation mechanism of the material, which could weaken the network of adhesive polymers and the hybrid layer. In terms of WS and SO, no statistically significant differences were found between control, PA, and API, with values varying from 191.6 to 193.8 μg/mm² for WS and from 84.3 to 91.2 μg/mm² for SO. Theoretically, similar DC% would indicate that the adhesives had a similar number of unreacted monomers that could be leached from the polymer networks, thus influencing their solubility. It can be speculated that natural agents were tightly confined within the polymer network and were not dislodged by the absorbed water; therefore, there was no interference in the solubility of PA and API when compared to the control group. A previous study also showed that proanthocyanidins incorporated in adhesives did not affect the WS and SO, API + FAR could be due to the lipid and hydrophobic nature of tt-farnesol, which, when trapped in the primer polymer matrix, is not soluble in water and was not leached.

Although the development of primary or recurrent caries depends on a complex microbial community, and biological cycling may occur with demineralization/remineralization phases in oral environments, a bacterial monoculture subjected to cariogenic challenge without demineralization/-remineralization cycles was used in the present study. Nevertheless, this experiment model can be considered appropriate to the aim of the research, considering the need to better understand the results obtained with natural antimicrobial agents added to an experimental adhesive for the first time. Furthermore, the exclusive use of a S. mutans monoculture biofilm has been considered as the first screening for antibacterial measures of experimental materials, such as composite, glass-ionomer cement, and adhesive. Additionally, the use of S. mutans biofilm models can be considered quite versatile because several analyses can be done, such as the measurement of the antimicrobial activity of the tested substances, influence on the virulence factors of the bacteria forming the biofilm, and any anti-caries effect through the measurement of dental tissue hardness, as used in this study.

In the present study, all adhesives containing the antimicrobial agents showed a reduction in hardness loss of dentin when compared to the control group. Even at the greatest distance from the margin (150 μm), PA, API, and API + FAR showed lower demineralization than did the control group. This indicates that all of the antimicrobial agents incorporated into the adhesive inhibited demineralization of the dentin exposed to the biofilm, which is very important for clinical practice. A previous study found a decrease in biofilm dry weight with the addition of apigenin to the commercial adhesives Clearfil S3 Bond Plus (CS3, Kuray Noritake) and OptiBond S (OPT, Kerr), with tt-farnesol in OPT and with the combination of the two agents in CS3, when compared to the adhesives lacking these substances. The amount of insoluble polysaccharides decreased with the addition of apigenin to CS3 and with the addition of tt-farnesol to OPT. Intracellular polysaccharides decreased with the
addition of apigenin or apigenin + tt-farnesol to CS3. These results showed that the effects of antimicrobial agents also depend on the adhesive used, the composition of the anti-
microbial agents, and how the addition of agents may cause changes in the adhesives. Other studies showed positive results with use of GSE in dentin.\textsuperscript{21,38,46} In a previous study, the antibacterial effects of adhesives containing proanthocyanins also was demonstrated.\textsuperscript{9} However, only disks of adhesives were evaluated in this study.\textsuperscript{9} In another study, immersion in a 6.5% proanthocyanidin solution for 30 min reduced the progression of artificial carious root lesions produced by the demineralization-remineralization process when compared to the control group.\textsuperscript{38} Dentin pre-
treatment with proanthocyanidins inhibited the development of secondary caries immediately adjacent to the adhesive-
dentin interface.\textsuperscript{21} The protective effect of proanthocyanidi-
s against the development of secondary caries in dentin was clearly illustrated by the presence of a zone of inhibi-
tion.\textsuperscript{21} Three possible mechanisms by which GSE may in-
hibit secondary caries in dentin have been described: tis-
tue stabilization, interfacial sealing, and antimicrobial activity. GSE can also positively affect the remineralization process by deposition of minerals and by interaction with the organic portion through the proanthocyanidin-collagen interaction, stabilizing the exposed collagen matrix.\textsuperscript{46}

In enamel, PA and API presented significantly less hard-
ness loss at 50 μm and 100 μm from the margin when compared to the control group. API + FAR did not differ when compared to the control group. All groups were similar at 150 μm from the margin, showing that the inhibition of recurrent caries is limited by distance from the margin. The best results in the prevention of enamel demineralization were observed for PA and API. A previous study\textsuperscript{21} showed no inhibition of secondary caries in enamel when pretreat-
ment with GSE, chlorhexidine digluconate, or carbodiimide was performed. On the other hand, an in vivo (rats) study showed that topical treatments with proanthocyanidins re-
sulted in smooth surface lesions that were 40%-45% less severe when compared to the control group.\textsuperscript{22} The immer-
sion in a 12.5% GSE solution also significantly increased the microhardness of artificial carious lesions in enamel when compared to the control group.\textsuperscript{34} It is believed that GSE can induce crosslinking through four mechanisms: co-
valent interaction, ionic interaction, hydrogen bonding inter-
action, and hydrophobic interaction. It is also possible that the remineralization of enamel is due to mineral precipita-
tion, especially in the interior, since most of its structure is composed of inorganic matter.\textsuperscript{34}

Koo et al\textsuperscript{24} showed that the severity of smooth surface caries was significantly lower in groups treated with api-
genin, tt-farnesol, apigenin+tt-farnesol, fluoride (F), and chlorhexidine when compared to a control group. The com-
bination of apigenin + tt-farnesol was more effective when compared to any compound alone.\textsuperscript{24} This potentialized ef-
fact of apigenin with tt-farnesol was not observed in the present study, likely because the substances were added to the primer and not directly applied to the dental surface. In another study,\textsuperscript{25} biofilms treated with apigenin and/or tt-farnesol in combination with fluoride displayed less bio-
mass and fewer insoluble glucans and iodophilic polysac-
charides than did those treated with natural antimicrobial agents alone. The combination of the natural agents with fluoride was also highly effective in preventing caries devel-
opment in rats, especially the combination of apigenin + tt-farnesol + fluoride.\textsuperscript{25} Thus, proanthocyanidins, apigenin, and tt-farnesol incor-
porated into adhesives have the potential to inhibit the de-
velopment of recurrent caries in enamel and dentin (except apigenin +tt-farnesol in enamel), which is very important in clinical practice. However, clinical studies are necessary to elucidate their efficacy.

CONCLUSION

The incorporation of proanthocyanidins and apigenin in an adhesive can prevent recurrent caries around the restoration margins in dentin and enamel, without jeopardizing the physi-
cal properties of the adhesive. The association of apigenin+ tt-farnesol decreased the hardness loss of dentin, but it also decreased dentin μTBS after 1 year of storage, and was not effective in preventing recurrent caries in enamel.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), Finance Code 001.

REFERENCES


2. Andre CB, Rosalen PL, Galvao LCC, Fonza AM, Ambrosano GMB, Ferra-

3. Assmussen E, Peutzfeldt A. Influence of selected components on cross-


5. Betacourt DE, Baldion PA, Castellanos JE. Resin-dentin bonding inter-
face: mechanisms of degradation and strategies for stabilization of the hybrid layer. Int J Biomater 2019;35268342.


8. da Silva EM, de Sa Rodrigues CU, de Oliveira Matos MP, de Carvalho TR, dos Santos GB, Amaral CM. Experimental etch-and-rinse adhesive sys-


14. Epasinghe UJ, Yu CK, Burrow MF, Tay RH, Sung NM. Effect of proantho-
15. Hanf a-e-siva AL, Lima AR, Moraes MM, Hua LS, Martins LR. Degree of conver-
16. Funiga A, Roques C, Badet C. Preventive effects of an original combina-
tion of grape seed polyphenols with amine monomers on dental biofilm for-
20. **ISO 4686, Dentistry – Inorganic-based filling, restorative and inlay mater-
ials. 2000(E).**
gF, Bedran-Russo A. Effect of bioactive primers on bacterial-induced sec-
24. Koo H, Pearson SK, Scott-Anne K, Abranches J, Cury JA, Rosalen PL,
Park YK, Marquis RE, Bowen WH. Effects of apigenin and tt-farnesol on
PL, Park YK. Apigenin and tt-farnesol with fluoride effects on S. mutans
26. Leme-Kraus AA, Aydin B, Vidal CM, Phansalkar RM, Nam JW, McAlpine J,
Pauli GF, Chen S, Bedran-Russo AK. Biostability of the proanthocyanidins-
27. Li Y, Carrera C, Chen R, Li J, Lenton P, Rodney JD, Jones RS, Aparicio C, Fok A. Degradation in the dentin-composite interface subjected to multi-
28. Lide, DR. Handbook of Chemistry and Physics. Boca Raton, FL: CRC
29. Liu Y, Dusevich V, Wang Y. Addition of grape seed extract renders phos-
GM, Cabral LM, Cavachelte LM, Portela MB. Experimental composites con-
32. Milward PJ, Adusei GO, Lynch CD. Improving some selected properties of
33. Miranda MEDSNG, Silva EMD, Oliveira MF, Simmër FS, Santos GB, Amaral CM. Resin-dentin bond stability of etch-and-rinse adhesive sys-
34. Mirkarimi M, Estdarvand A, Baraghzi M, Delazar A, Kharaizafid MJ. Re
35. Munoz-Gonzalez I, Thurman T, Bartolome B, Moreno-Arribas MV. Red
wine and oenological extracts display antimicrobial effects in an oral bac-
38. Pavan S, Xie Q, Hara AT, Bedran-Russo AK. Biomimetic approach for root
caries prevention using a proanthocyanidin-rich agent. Caries Res 2011;
45:443–447.
40. **siva α-κ, ουκοκατες κς, σογρες αγ, ουκοκατασς ΚΚ, ηνοναρα Μς. Ef-
41. Simmer FS, Da Silva EM, Bezerra R, Miranda M, Noronha Filho JD, Amaral
CM. Bond stability of conventional adhesive system with MMP inhibitors to superficial and deep dentin. J Mech Behav Biomed Mater 2019;100:
103402.
42. Supuran CT. Nanoparticles for controlled release of anti-biofilm agents
25:945–948.
43. Swadas M, Dave B, Vyas SM, Shah N. Evaluation and comparison of the
44. Van Landuyt KL, Snaauwaert J, De Munck J, Peumans M, Yoshida Y,
Poltevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Sys-
tematic review of the chemical composition of contemporary dental adhe-
45. Velazquez E, Vaidyanathan J, Vaidyanathan TK, Houpt M, Shey Z, Von
Hagen S. Effect of primer solvent and curing mode on dentin shear bond
46. Xie Q, Bedran-Russo AK, Wu CD. In vitro remineralization effects of grape
47. Zhao W, Xie Q, Bedran-Russo AK, Pan S, Ling J, Wu CD. The preventive

**Clinical relevance:** The incorporation of proanthocyanidins, apigenin, or apigenin-β-tannins into the primer of an adhesive can prevent recurrent caries at dentin margins; however, proanthocyanidins and apigenin are preferred for enamel margins.