Association between Caspase-1, TNF-α Salivary Level and Their Diagnostic Potential to Discriminate Periodontitis from Healthy Control

Athraa A. Mahmooda / Raghad Fadhil Abbasb

Purpose: Periodontitis is associated with caspase and proinflammatory mediators, such as caspase-1 and tumor necrosis factor-alpha (TNF-α). The aim of this study was to evaluate the salivary levels of caspase-1 and TNF-α and determine their accuracy in differentiating periodontitis patients from individuals with a healthy periodontium.

Materials and Methods: This case-control study enrolled 90 subjects, aged 30 to 55, attending the Department of Periodontics at Baghdad’s outpatient clinic. Patients were initially screened to evaluate their eligibility for recruitment. After applying inclusion/exclusion criteria, subjects with a healthy periodontium were included in group 1 (controls), while subjects with periodontitis were included in group 2 (patients). The salivary levels of caspase-1 and TNF-α in participants’ unstimulated saliva were measured using an enzyme-linked immunosorbent assay (ELISA). Then the periodontal status was determined using the following indices: full-mouth plaque, full-mouth bleeding on probing, probing pocket depth, clinical attachment level, and gingival recession.

Results: TNF-α and caspase-1 salivary levels were higher in periodontitis patients than in healthy controls and were positively correlated with all clinical parameters. A positive significant correlation between TNF-α and caspase-1 salivary levels was noticed. For differentiating periodontal health and periodontitis, the area under the curve (AUC) values of TNF-α and caspase-1 were 0.978 and 0.998, while the proposed cut-off points were 128.163 pg/ml and 1.626 ng/ml, respectively.

Conclusion: The present findings supported a previous discovery that periodontitis patients have significantly higher levels of salivary TNF-α. In addition, there was a positive correlation between the salivary levels of TNF-α and caspase-1. Furthermore, caspase-1 and TNF-α showed high sensitivity and specificity in the diagnosis of periodontitis, as well as distinguishing periodontitis from periodontal health.

Key words: caspase-1, periodontitis, saliva, TNF-α

Caspases, a family of intracellular protease enzymes that are key mediators of apoptosis or programmed cell death during inflammation, can be classified into three types, depending on function.22 Initiator caspases, such as caspase-2, -8, and -9, initiate the apoptosis signal, while the effector caspases, such as caspase-3, -6, and -7, break down different cellular substrates to cause morphological changes. Inflammatory caspases, such as caspase-1, -4, -5, and -11 to -14, are involved in inflammatory cytokine signaling and activate nuclear factor-kappa β (NF-κβ).15,18,31

The gingivae and dental alveolar bone are involved in the inflammatory process, of which NF-κβ is a crucial regulator.38 Activation of NF-κβ can induce activation and stimulation of a variety of biomolecular mediators, including TNF-α, interleukin-6 (IL-6), and IL-1β. Thus, TNF-α secretion during periodontitis is dependent on inflammatory caspase activation following recognition of a pathogenic or harmful effect.1,7,12,20,25
TNF-α, a major proinflammatory mediator, is crucial in periodontitis-mediated additional periodontal tissue loss and bone resorption, because it stimulates activation, proliferation, and differentiation of osteoclasts, which results in bone loss. Caspase activation orchestrates a localised chronic inflammatory response, and is necessary for TNF-α expression in periodontitis. Both healthy and periodontitis-affected saliva can be tested for caspase activation and TNF-α expression. As a result of caspase activation, the higher concentration of TNF-α seen in periodontitis closely correlates with the immune response and tissue destruction.

In this study, the salivary levels of caspase-1 and TNF-α were measured in a sample of Iraqi periodontitis patients and healthy-periodontium controls using an ELISA technique, and were then correlated with clinical parameters (full-mouth PI, full-mouth BOP, PPD, CAL, and GR indices) to diagnose periodontitis and to distinguish periodontitis patients from healthy controls.

MATERIALS AND METHODS

The present investigation was designed as an observational case-control study conducted in Baghdad, Iraq, from March 2022 to August 2022. The ethics committee of the University of Baghdad’s College of Dentistry approved the study.

The recruitment of participants is depicted in Fig 1. Before enrollment in the study, the medical and dental history of each patient was recorded using a questionnaire. This included items about the subject’s name, age, sex, medication used, smoking or alcohol consumption, the full medical history, as well as the history of the previous periodontal treatment. In addition, each patient was asked to sign a consent form, which included written information fully explaining the nature and aims of the study. Then, salivary samples were collected from each subject followed by a clinical examination.

All participants (37 females and 53 males) recruited for this study were systemically healthy, within the normal weight range according to the body-mass index (BMI 18.5–29.9), had a minimum of 20 teeth, were cooperative and willing to sign an informed consent form, were nonsmokers, had not undergone periodontal treatment in the last 6 months, had not been on any medications in the last 3 months, had no recent acute illness symptoms (e.g. COVID-19), or any oral lesion that was not related to periodontitis.

The study’s healthy control group (n = 30 subjects) had a healthy, intact periodontium, with BOP <10%, PPD ≤3 mm, and no CAL. The periodontitis patient group (n = 60) had detectable interdental CAL at ≥2 non-adjacent teeth, or ≥3 mm CAL on the buccal (facial) or lingual/palatal aspects, associated with PPD >3 mm at ≥2 teeth. Furthermore, all patients had to have a classification of generalised, stage 1 to 4, grade A to C, unstable (PPD ≥4 mm with BOP or PPD >5 mm with or without BOP) periodontitis, with no risk factors, eg, diabetes mellitus (DM) and/or smoking. Wisdom teeth were excluded from the periodontal examination. The clinical parameters were measured for all existing teeth by the same examiner, which included full-mouth PI, full-mouth BOP, PPD, CAL, and GR for all patients, using a Michigan O periodontal probe (Hu-Friedy; Chicago, IL, USA). The examined subjects were instructed to not eat or drink anything except water for at least 60 min before the samples were collected. The individuals properly cleaned their mouths with drinking water for 15 s at 15 s to eliminate any food particles, bacteria, and desquamated epithelium, then waited 2 min for water clearance before the sample was collected. Salivary samples were collected from study subjects between 9 and 12 AM, using a standardised, passive saliva-drooling method for the collection of whole saliva.
The collected samples were placed in a small cooler for 30 min, and were then centrifuged at 3000 rpm for 15 min to separate the cellular debris from the salivary supernatants. Then the saliva samples were frozen at -24°C within 4 h of collection until assayed and analysed by ELISA. This was done to prevent bacterial growth and minimise the loss of biomarkers in the sample. The subject number previously noted on the case sheet was written on the label of the tube, along with the time and date of sample collection.

The accuracy, validity, and reproducibility of the periodontal parameter measurements were maximised by inter- and intra-examiner calibration on 5 patients until an agreement level of more than 75% was reached.

For categorical variables (PI and BOP), the targeted level was a Kappa coefficient ≥75%. For continuous variables (PPD, CAL, and GR), the level of agreement rounded to the nearest millimeter should be >0.9, as determined by the interclass coefficient assay.

Statistical Analysis
All statistical analysis of the data was performed and processed using SPSS for Windows, version 28 (IBM; Armonk, NY, USA). For continuous data, the mean, standard deviation (SD), and median were used, while frequency (number) and percentage were used for categorical variables.
As shown in Table 3, using Spearman’s rank correlation coefficient (r), this study discovered statistically significant correlations (p < 0.000) between salivary levels of caspase-1/TNF-α and clinical parameters (PI, BOP, PPD, CAL, and GR). Furthermore, there were statistically significant correlations between salivary biomarkers and age. TNF-α and caspase-1, on the other hand, were not significantly correlated with sex. Surprisingly, there was a statistically significant correlation (r = 0.714, p < 0.000) between caspase-1 and TNF-α salivary levels (Table 3). Linear regression was performed to describe this correlation between the two cytokines (Fig 2).

Based on the results of the ROC curve, which was used for differentiating periodontal health from periodontitis, the results of AUC for TNF-α and caspase-1 were 0.978 and 0.998, respectively. The proposed cut-off points were 128.163 pg/ml and 1.626 ng/ml for TNF-α and caspase-1, respectively (Fig 3 and Table 4).

Table 3 Correlation between salivary biomarkers, clinical parameters, and demographic data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Salivary TNF-α</th>
<th>Salivary caspase-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p-value</td>
</tr>
<tr>
<td>PI</td>
<td>0.641</td>
<td>0.000**</td>
</tr>
<tr>
<td>BOP</td>
<td>0.726</td>
<td>0.000**</td>
</tr>
<tr>
<td>PPD</td>
<td>0.772</td>
<td>0.000**</td>
</tr>
<tr>
<td>CAL</td>
<td>0.768</td>
<td>0.000**</td>
</tr>
<tr>
<td>GR</td>
<td>0.706</td>
<td>0.000**</td>
</tr>
<tr>
<td>Age</td>
<td>0.213</td>
<td>0.044*</td>
</tr>
<tr>
<td>Sex</td>
<td>0.118</td>
<td>0.269 NS</td>
</tr>
<tr>
<td>Salivary caspase-1</td>
<td>r</td>
<td>p-value</td>
</tr>
<tr>
<td>Salivary caspase-1</td>
<td>0.714</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

r: Spearman’s rank correlation; NS: non-significant at p ≥ 0.05; statistically significant at ** p ≤ 0.01, *** p ≤ 0.001. PI: full-mouth plaque index; BOP: full-mouth bleeding on probing; PPD: probing pocket depth; CAL: clinical attachment loss; GR: gingival recession.

The Shapiro-Wilk test was used to determine the normality of data distribution. Mann-Whitney U-tests were used to determine statistically significant differences between the groups studied and test the null hypothesis. In addition, Spearman’s correlation coefficient determined the statistically significant correlations between different parameters and variables. Categorical variables were analysed with the X² test, and p-values < 0.05 were defined as statistically significant. The area under the curve (AUC) and the receiver operating characteristic (ROC) curve were used to assess the diagnostic efficacy of biomarkers.

RESULTS

Table 1 shows the demographic and periodontal parameters of the 90 participants (cases and controls). The mean age of patients was 41.6 ± 8.3 years, and that of the control participants was 38.3 ± 6.4 years. The proportion of males to females in the patient group was 35/25, and 18/12 in the control group. There were statistically non-significant differences in age and gender between the two study groups (p > 0.05).

Furthermore, the current results revealed a statistically significant increase in mean levels of PI, BOP, PPD, CAL, and GR among periodontitis patients (0.63 ± 0.22, 0.47 ± 0.18, 4.54 ± 0.62, 3.46 ± 1.00 and 2.25 ± 1.16, respectively) as compared to control group.

In addition, Table 2 demonstrates the statistically significant increase (p < 0.000) found in the median salivary levels of each salivary biomarker, i.e. TNF-α and caspase-1, in the periodontitis group (151.036 pg/ml and 3.022 ng/ml, resp) when compared to the control group (82.768 pg/ml and 1.298 ng/ml, resp).

DISCUSSION

The IL-1 converting enzyme, caspase-1, is implicated in the necrotic, inflammatory death of host cells. Salivary caspase-1 levels in this study were statistically significantly higher in the periodontitis group than in the the group with a healthy periodontium. This suggests that the level of periodontal tissue damage and the rise in salivary caspase-1 are related.

The rise in caspase-1 concentration follows the activation of different cells (epithelial cells, leukocytes, fibroblasts of periodontal ligament, and osteoblasts) by the inflammatory stimulus to produce pro-inflammatory factors such as IL-1β and TNF-α. These are thought to be crucial in the destruction of connective
tissue and bone, as well as in periodontal attachment loss in periodontitis, as a result of the activation of osteoclasts and matrix metalloproteases (MMP).4,8,23,33,36

No research has looked into the relationship between caspase-1 and TNF-α levels and periodontitis up until this point. Furthermore, only a small number of researchers have found evidence to support the link between TNF-α and periodontitis,10,24 and even fewer have found evidence to support the association.30,34 Therefore, using the new 2017 classification system for periodontal disease, the purpose of this study was to compare the levels of TNF-α and caspase-1 in the saliva of periodontitis patients vs periodontally healthy subjects.

In this cross-sectional investigation, TNF-α levels in the saliva of patients and periodontally healthy subjects were
calculated and compared to caspase-1 levels. TNF-α is a pro-
inflammatory cytokine that influences the activation of inflam-
matory leukocytes, change of vascular permeability, and stimula-
tion of bone resorption. 37

The current study found a higher level of salivary TNF-α in
the patient than in the control group. This agrees with the
studies by Varghese et al17 and Ehsan et al,9 who noticed that
individuals with chronic periodontitis had TNF-α values sub-
stantially greater than those of control subjects.

Additionally, there was a statistically significant correlation
between generalised periodontitis parameters and the presence
of TNF-α (p < 0.000). These results point to a potentially harm-
ful effect of TNF on periodontal tissues. These findings were in
agreement with studies by Geng et al10 and Mahmood and Al-
Ghurabi,24 who found that patients with chronic periodontitis
had higher levels of this cytokine compared to people with a
healthy periodontium. These studies also concluded that TNF-α
and IL-6 may be used as diagnostic biomarkers for periodontitis.

In contrast, Ng et al28 and Rathinasamy et al30 found no sta-
tistically significant difference in the level of salivary TNF-α
between chronic periodontitis and healthy subjects (p > 0.05). The
precise role of TNF-α in periodontitis is still unknown.

As we followed a new classification of periodontitis, this vari-
bility in outcomes may be due to different patient selection
criteria. Here, the periodontitis patients demonstrated a higher
level when compared to the periodontally healthy subjects; the
difference in the results may be attributed to various potential
confounders, including different age groups, differences in sam-
ping (stimulated or unstimulated), restricted samples of study,
dissimilar processing of centrifugation, storage time, storage
temperature, and biomarker evaluation techniques (enzyme-
linked immunohistochemistry) or variations in the analysis kits.

In addition, the Teles et al34 study showed results dissimilar
to those of this study; they found no correlation between the
levels of salivary TNF-α and periodontal parameters. They at-
tributed their findings to the inhibition of cytokines by putative
inhibitors that were present in whole saliva.

Another interesting finding in this study was the statisti-
cally significantly positive association of salivary TNF-α with
PPD, CAL, and GI. Correspondingly, previous Iraqi studies
demonstrated a statistically significantly positive correlation of
TNF-α levels with periodontal destruction parameters (PI, GI,
PPD, and CAL), demonstrating this cytokine’s contribution to
the onset of periodontal disease.11,24

Similarly, in samples of individuals with chronic and aggres-
sive periodontitis, Kurtis et al17 found a strong association be-
tween salivary TNF-α levels and periodontal clinical indices
(PPD, CAL, PI, and GI). Unlike the current results, Varghese et
al37 reported a statistically non-significant correlation between
TNF-α and periodontitis parameters. This finding may be at-
tributed to the extensive dilution of this marker in whole saliva,
which makes it unable to reflect the tiny variations in peri-
donatal parameters. 37

Interestingly, a strong positive correlation was found among
the levels of the caspase-1, proinflammatory cytokines (TNF-α)
and the periodontitis parameters in the present study, support-
ing the hypothesis that these biomarkers may play a consider-
able role in triggering processes that result in the chronic
inflammation of periodontitis. Thus, selected salivary biomark-
ers showed high sensitivity and specificity in the diagnosis of
periodontitis and distinguishing it from periodontal health at
the proposed cut-off points (128.163 pg/ml of proinflammatory
cytokines [TNF-α] and 1.626 ng/ml of caspase-1).

A limitation of the current study was that only systemically
healthy nonsmokers were included, and the severity of peri-
donitis was not considered. Thus, it is suggested that future
research measure the level of TNF-α and caspase-1 relative to
the severity of periodontitis. In addition, other proinflammatory
and anti-inflammatory cytokines need to be investigated for a
possible association with caspase-1 and periodontitis. Further
investigations using other types of samples, such as gingival
tissues and GCF, are necessary. Nevertheless, the precise role of
caspase-1 in the pathogenesis of periodontal disease remains
unknown. Thus, further research into caspase-1 activity in peri-
donitis is required, particularly at the molecular level.

CONCLUSION

Caspase-1 and TNF-α salivary levels were increased in periodon-
titis patients compared to the healthy controls, and were posi-
tively correlated with clinical parameters. Furthermore, the
results of this study confirmed the interactive relationship be-
tween TNF-α and caspase-1 salivary levels, which may play a
considerable role in triggering the processes that lead to chronic
inflammation in clinical periodontitis. The salivary biomarkers
caspase-1 and TNF-α showed high diagnostic accuracy in distin-
guishing periodontal health from periodontitis.

ACKNOWLEDGEMENTS

The authors are grateful to all study participants.
REFERENCES

1. Bonizzi G, Karin M. The two NF-κB activation pathways and their role in in-
2. Boyce BF, Li P, Yao Z, Zhang Q, Badell IR, Schwarz EM, et al. TNF-alpha and
3. Chapple ILC, Mealey BL, Van Dyke TE., Bartold PM, Dommisch H, Eickholz P,
et al. Periodontal health and gingival diseases and conditions on an intact
and a reduced periodontium: Consensus report of workgroup 1 of the 2017
World Workshop on the Classification of Periodontal and Peri-Implant Dis-
vialis-derived lipopolysaccharide combines hypoxia to induce caspase-1 acti-
5. Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic
6. Dahash SA, Mahmood MS. Association of a genetic variant (rs689466) of cyclo-
oxygenase-2 gene with chronic periodontitis in a sample of Iraqi population.
7. Darveau RP, Curtis MA. Oral biofilms revisited: A novel host tissue of bacterio-
8. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the
9. Gamel EB, Hashim NT, Satti A, Gismalla BG. Salivary TNFα levels in groups of
patients with rheumatoid arthritis and chronic periodontitis. BMC Res Notes
2017;10:34.
10. Geng W, Ying-Hui T, Sheng-Gen SJ. Expression of IL-6 and TNF-α activities in
11. Hamed MN, Ali BG. Serum level of TNF-α and IL-17 in patient have chronic
periodontitis and a reduced periodontium: Consensus report of workgroup 1 of the 2017
World Workshop on the Classification of Periodontal and Peri-Implant Dis-
ation of salivary tumor necrosis factor ɑ in health and chronic periodontitis: a
15. Jiménez Fernández D, Lamkanfi M. Inflammatory caspases: key regulators of
16. Köönen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of
17. Kornönen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of
oral health and chronic periodontitis: a case-control study. Contemp Clin Dent Pract
18. Lamkanfi M, Valjent E, Zabu M, Saelens X, Declercq W, Vandenabeele P. Caspase-1 acti-
vation and a reduced periodontium: Consensus report of workgroup 1 of the 2017
World Workshop on the Classification of Periodontal and Peri-Implant Dis-
19. Li Z, Cai Q, Li B, Meng W. Caspase-11/4 is involved in bacteria-mediated peri-
21. Mahmood AA, Leka’s ML. Effect of the examination stress on periodontal
health status and salivary IL-1β among Iraqi dental students. J Bagh Coll Dent
22. Matsumoto K, Ooka Y, Kato A, Suzuki N, et al. MIR-200b attenuates IL-6 production through IKKβ and ZEB1 in human gingival fibro-
23. Medzhito RJN. Recognition of microorganisms and activation of the immune
43:38.
25. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apopto-
26. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apopto-
27. Sexton NJ, Donley M, Hausmann E, Hutson AD, Rossomando EF, Scannapieco FA.
Candidate salivary biomarkers associated with alveolar bone loss: cross-sec-
28. Younis L, Hassan M. The role of nuclear factor kappa B in periodontal dis-
ease. J Periodontol 2018;89(suppl 1):S74–S84.