Effect of Curodont™ Repair in Patients with Proximal Carious Lesions:

Uncontrolled, Non-Interventional Study - intermediate report

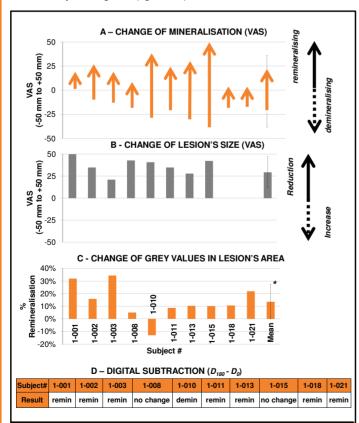
0039

m. schlee¹, f.rathe¹, c. bommer²

¹ 32 Schöne Zähne, 91301 Forchheim, Germany; ² credentis ag, 5210 Windisch, Switzerland

1 abstract

The prevalence of caries on the proximal tooth surface is high and the interdental location of the lesion a challenging site for treatment. In this study patients with early proximal caries (E1 and E2) are treated with the regenerative product Curodont Repair. It contains P11-4, a self-assembling-peptide (SAP), that is applied as a solution onto the lesion surface. P11-4 then diffuses into the subsurface body of the early carious lesion where it forms a 3-D fibril network. In the process of a few months Ca²+ and PO₄³- ions, excessively present in the patient's saliva, attach to the nucleation sites of the P11-4-network and induce formation of *de novo* hydroxyapatite (HA) crystals [1]. The aim of the present study is to evaluate the efficacy of Curodont Repair in respect to regenerating enamel in patients with early proximal caries.

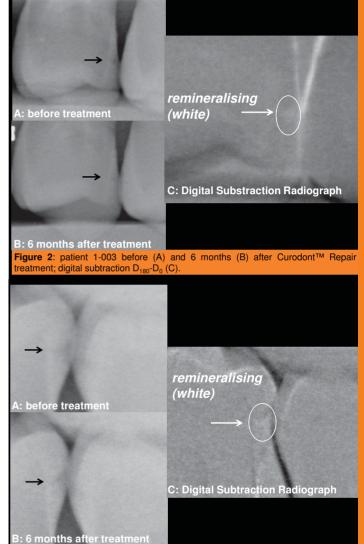

2 material and method

25 patients with an early, untreated, proximal carious lesion (E1 and E2) are enrolled in this prospective study and treated with a single CurodontTM Repair application. Follow-ups are 6 (D_{180}) and 12 months (D_{365}) after treatment (D_0). Assessments on each visit are:

- VAS progression & size (visual analogue scale, -50 mm to +50 mm)
- standardised x-ray

3 results

The study is on-going. 10 patients (19-59 years old, 5 male, 5 female) with 6 months (D_{180}) data were available for interim analysis and assessed by investigators (figure 1-3).


Figure 1:

A - lesion's progression (VAS): Δ remineralisation from D₀ to D₁₈₀. 10/10 lesion's were assessed as «remineralising» (Δ mean_{remin} = 41.7mm \pm 24.9).

Note: D₀ according to patient's history and caries risk profile.

- **B** lesion's size from from D₀ to D₁₈₀ (VAS): 8/10 lesions were assessed as «reduction in lesion size» (VAS_{mean}= -29.5mm \pm 17.6), 2/10 as «unchanged».
- C change of grey values in lesion's area from D₀ to D₁₈₀: 9/10 lesions showed remineralisation (mean_{remin}=13.7% \pm 13.6, p=0.011* (significant)).
- D Digital subtraction x-rays (D_{180} D_0): 7/10 lesions showed remineralisation 2/10 «no change», 1/10 demineralisation.

Note: white pixels in lesion's area: remineralisation; black pixels: demineralisation; greyish appearance: no change

4 discussion

Figure 3: patient 1-013 labeled as in figure

Preliminary results of 10 patients with 6 months follow-up demonstrate *in-depth* remineralisation of the lesion after treatment with Curodont™ Repair. Digital subtraction analysis demonstrated increased remineralisation within the subsurface lesions and was confirmed by clinical assessment supporting the biomimetic mineralisation approach first presented by Kirkham et al. [1]. So far 6 months data of the first 10 patients are promising - nevertheless, more data is needed to show the long-term-effect of the treatment.

5 conclusion

Biomimetic mineralisation with $Curodont^{TM}$ Repair is a painless, tooth-preserving, biological treatment for in-depth remineralisation that seems to be a promising approach for the treatment of early, progressing, interdental carious lesions. In respect to the challenging interdental treatment site, its application is convenient and fast.

literature

[1] Kirkham et al., 2007: «Self-assembling Peptide Scaffolds Promote Enamel Remineralization».

