PMID- 36255853 OWN - Quintessenz Verlags-GmbH CI - Copyright Quintessenz Verlags-GmbH OCI - Copyright Quintessenz Verlags-GmbH TA - J Adhes Dent JT - The Journal of Adhesive Dentistry IS - 1757-9988 (Electronic) IP - 1 VI - 24 PST - epublish DP - 2022 PG - 375-384 LA - en TI - Influence of Aging and Surface Treatment on the Composite Bond Strength to Translucent 3Y-TZP Zirconia LID - 10.3290/j.jad.b3500591 [doi] FAU - Moqbel, Nawal M. AU - Moqbel N FAU - Al-Akhali, Majed AU - Al-Akhali M FAU - Wille, Sebastian AU - Wille S FAU - Kern, Matthias AU - Kern M CN - OT - translucent 3Y-TZP zirconia OT - aging OT - alumina-particle air abrasion OT - bonding OT - primer OT - luting composite AB - Purpose: The purpose of this study was to assess the effect of aging and alumina-particle air abrasion at different pressures on the bond strength of two luting composites to a translucent 3Y-TZP zirconia. Materials and Methods: Half of the 192 disk-shaped zirconia specimens were aged in an autoclave (group A) for 20 h (134°C, 2 bar), and the other half was not aged (group N). For each group, a different surface treatment was applied: as-sintered (group SIN), alumina-particle air abrasion either at 1 bar (group 1B) or at 2.5 bar (group 2.5B). Disks were bonded to Plexiglas tubes filled with composite resin using a phosphate monomer-based luting composite (group SA) or with a separate phosphate monomer containing primer before using a phosphate–monomer-free luting composite (group V5). All specimens were subjected to tensile bond strength testing (TBS) before and after thermocycling. Results: There were no statistically significant differences caused by autoclave aging for the test groups before thermocycling, except for the A-SIN-SA group, where the TBS decreased significantly. The variation of the aluminaparticle air abrasion pressure showed no statistically significant effect, except in the N-1B-V5 group, where TBS was significantly lower than N-2.5B-V5. After thermocycling, the TBS of most groups decreased significantly. Specimens of the primer group, which were abraded at 1 bar, showed a significant decrease in TBS in comparison with alumina-particle air abrasion at 2.5 bar. Conclusion: Twenty hours of autoclave aging had almost no influence on the bond strength of the test groups. For the primer/resin bonding system, higher pressure during alumina-particle air abrasion might help obtain a higher and more durable bond strength to zirconia. AID - 3500591