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Preface

Digital Dentistry: A Comprehensive Reference and Pre-
view of the Future delineates the enormous breadth 
and depth of digital dentistry, both now and in the 
future. While CAD/CAM is an integral part of digital 
dentistry, many other important digital develop-
ments and applications can and will profoundly in-
fluence and change the dental profession. The pri-
mary intention of this book is to delineate the scope 
and impact of digital dentistry today and tomor-
row, including the challenges of and barriers to 
integrating it into practices, laboratories, research, 
and education. The secondary intention is to 
 create a foundation from which dental clinicians, 
hygienists, laboratory technicians, academics, and 
various other professionals from an array of fields 
can exploit current technologies to further advance 
oral and systemic health and potentialize the 
 as-yet- unimagined opportunities.

The authors of the various chapters in this book 
have been widely drawn from academia, industry, 
private practice, and other professional arenas. 
They represent various geographical regions and 
cultures, professional and educational back-
grounds, and educational philosophies. Together, 
their perspectives provide the book with a rich bal-
ance of insight into and experience with digital den-
tistry and related technologies.

Following an introduction (Chaps 1 and 2) to 
the breadth of digital dentistry, the book is organ-
ized into six logical sections: 

 n The first section (Chaps 3 to 5) addresses tech-
nologies for acquiring digital data, including a 
review of the latest intraoral scanners, the state 
of the art in digital radiography, and the wealth 
of data contained but often unexploited in elec-
tronic health records.

 n The next section (Chaps 6 to 9) focuses on 
 manipulating digital data. It begins with an 
overview of current CAD/CAM systems, and 
contains a system-by-system description of ad-
ditive manufacturing technologies (commonly 
called 3D printing). This overview is comple-
mented by two heavily clinically oriented chap-
ters; one providing a step-by-step description of 
digital restoration design based on biologic 
principles, and a second outlining the differenc-
es between digital and conventional workflow 
for crowns, implant-supported crowns, den-
tures, and other appliances. 

 n The following section (Chaps 10 to 15) focuses 
on leveraging the digital data. These chapters 
provide insight into innovative applications, in-
cluding approaches to caries detection and 
mechanisms for hard tissue repair, utilization of 
3D digital data for surgical navigation in com-
plex head and neck surgery, craniomaxillofacial 
surgery design, real-time disease monitoring 
with single-cell resolution without any ionizing 
radiation, and chairside rapid bacteria detec-
tion during endodontic treatment. The section 
concludes with a fascinating discussion of the 
challenges involved in printing tissue growth-in-
ducing scaffolds. 

 n Then, the emphasis turns toward implications 
of and opportunities for digital dentistry in 
education (Chaps 16 to 18). Here, the authors 
address transformations in education and 
learning enabled by digital technologies, and 
the impact and opportunities these technolo-
gies create in dental education. The section 
ends with a provocative discussion of new ways 
to categorize, assess, and integrate information 
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for a deeper understanding of clinical condi-
tions, treatments, and outcomes. 

 n The next set of chapters (Chaps 19 to 21) 
 focuses on challenges and opportunities in-
trinsic to digital dentistry. The first chapter is a 
case study of how digital dentistry is integrat-
ed into a busy private practice experience. This 
is followed by two chapters; one providing a 
stimulating discussion of how we might keep 
up with the fast-paced changes in technolo-
gies, and the second describing important 
ways to understand the storage, sharing, and 
usage of big data.

 n Finally, we look to the future (Chaps 22 and 
23). The first chapter in this section proposes 
and demonstrates how virtual, augmented, and 
mixed reality will shape how we learn and how 
we practice in tomorrow’s world. The last chap-
ter explores promising discoveries in dentistry 
and basic science as well as synopsizing innova-

tions from other fields, postulating how all this 
may influence the profession and how we live 
and learn in the future.  

I am enormously grateful for the energy and enthu-
siasm of the many authors who have contributed 
their innovations, ideas, and dreams. Personally, it 
has been a tremendous honor to work with them 
and learn from them. Thanks would not be com-
plete without special applause for Van P. Thomp-
son and the Quintessence team for their thoughtful 
suggestions and undying patience throughout the 
creation of this work. 

This book is dedicated to the host of current and 
future dental professionals, engineers, and scientists 
interested in and contributing insight and innovation 
to the profession of dentistry.

Dianne Rekow
Editor
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Chapter 1
Digital Dentistry: 
Broadening Dentistry’s 
Horizon and Impact

Dianne Rekow

1.1 Introduction

Perhaps the first thing dental professionals think 
about when they hear the words digital dentistry is 
computer-aided design/computer-aided manufac-
turing (CAD/CAM). While that is not surprising, in 
fact digital dentistry impacts exceptionally more 
broadly. This chapter explores some of the obvious, 
as well as less obvious, possibilities for expanding 
horizons and increasing impact. Digital data, re-
corded as part of a patient’s visits, form the essen-
tial platform that broadens the horizon and impact 
of dentistry. Data are the foundation for copious 
advantages, positively impacting practice, educa-
tion, interdisciplinary communication, patient 
know ledge, and health (Fig 1-1). 

1.2 Digital data: a platform for 
impact

1.2.1 Electronic patient records (EPRs)
Although they are not always considered a critical 
element of digital dentistry, EPRs contain a wealth 
of information that can be leveraged for several 
purposes. They contain the patient’s personal data 
as well as general and dental health history, and are 
commonly used to establish recall appointments. In 
today’s world, patients themselves seek informa-
tion about impending procedures. Would it not be 
helpful if, before an appointment, their healthcare 
professional provided them with information about 
what to expect and the choices they may consider? 
The practice may already arm patients with com-
mercially or professionally preprinted information 
about their oral hygiene and the need for effective 
brushing, flossing, ways to care for various condi-
tions or appliances, and various alternatives for 
quitting smoking. A further small step may be to 
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Fig 1-1  Digital dentistry’s broad horizon.
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preemptively supply patient-specific or patient-tar-
geted information about discussions and decisions 
anticipated by the clinician at the patient’s next 
 visit. This could enlighten patients, alleviate at least 
some of the fears or concerns they may have, and 
likely speed up the time taken to make clinician- 
patient treatment decisions. 

In aggregate, a practice’s EPRs also provide a 
wealth of information for the practice itself in two 
important ways. Firstly, a model similar to that used 
by web-based retailers could be created to track 
the kinds of dental procedures performed over a 
specified period of time. With appropriate comple-
mentary software, it could provide an automated 
inventory control system. Taken a bit further, it 
could be used to automatically order supplies. Cap-
italizing on various inventory control systems used 
in other industries, such an approach could con-
ceivably lower costs and avoid the lack of needed 
materials. 

Secondly, EPRs can help in the understanding of 
the efficiency and effectiveness of a practice. Using 
a much-simplified model of the US National Insti-
tute of Health practice-based research, a practice 
may discover that some techniques they use are no 
longer necessary. For example, many clinicians 
place a liner under composite restorations; others 
argue that only layering with multiple composite 
curing cycles rather than bulk fill followed by curing 
should be used. In both examples, the expectation 
is that the technique used is critical for minimizing 
(or eliminating) post-treatment sensitivity in poster-
ior teeth. However, liners and the curing technique 
have been shown to make no difference to 
post-treatment tooth sensitivity.3,4 Findings like 
these can save on material costs and clinical time 
without negatively impacting patient outcomes. 
EPRs offer information at dental professionals’ fin-
gertips to investigate a host of questions of interest 
and import to themselves.
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1.2.2 Digital radiographs, digital 
photographs, and intraoral 
scans

Few dental professionals need to be reminded of 
the advantages of digital radiographs, now used ex-
tensively throughout the world. Digital photographs 
provide a rich documentation of patients’ facial 
characteristics, especially important in smile design 
accompanying restorative, esthetic (e.g. veneers, 
bleaching, etc) and orthodontic treatment as well as 
treatment of various pathological conditions. Intra-
oral scans document intraoral hard and soft tissue 
conditions. Patients prefer this alternative to im-
pressions, and it has been shown to be more 
cost-effective for the dental professional.12,17,21 
Scans also serve other valuable functions such as 
providing an accurate record of intraoral changes 
over time. If a remake of a restoration or appliance 
is needed, a saved scan can be used. Also, onscreen 
images from the scan facilitate conversations with 
the patient about treatment alternatives. Impor-
tantly, images stored on a computer require minis-
cule space compared with storing stone casts.11

1.2.3 The digital dataset
Taken together, electronic records, digital radio-
graphs, digital photographs, and intraoral scans 
create an important set of digital data. This dataset 
has immense value and impact. It serves as a basis 
for patient as well as professional and interprofes-
sional consultations, telemedicine and teledentist-
ry, and education. Onscreen images enable conver-
sations between clinicians and patients. When 
patients can easily visualize images, they can better 
understand alternative treatment options, becom-
ing co-partners in treatment decisions. 

Consultations between professionals within a 
discipline or between disciplines are essential in 
dentistry, especially for complex patient conditions 
that often require engagement and/or input from 
multiple specialties. Being able to transfer data and 
images digitally facilitates discussions in many 
ways. Data are easily transferred electronically. 

There is no need to make copies that may lose some 
of the original quality in the copying process, thus 
assuring both the quality of the data and saving both 
costs and time for the original clinician. Importantly, 
with digital data it is equally easy to provide informa-
tion to one or multiple other professionals. With 
modern digital communication systems (Skype, Go-
To-Meetings, etc), group consultations are possible 
without everyone having to be in the same physical 
location. One can only imagine how valuable this 
combination of digital data and digital communica-
tion could be for complicated consultations about 
craniofacial disorders, oral cancer diagnoses and 
treatments, or facial transplants. 

Many areas in both the well-developed and de-
veloping world have less than ideal medical and 
dental services. Telemedicine and teledentistry can 
improve this situation, capitalizing on the informa-
tion in the digital dataset. Two examples are note-
worthy: In Australia, a residential care home for the 
elderly used digital data to assess oral health and 
remotely establish a treatment plan and, in the pro-
cess, discovered that this not only improved the 
oral health of the residents but also reduced the 
cost to the home.14 In France, oral examinations 
are required for prisoners, but without digital data 
intrinsic to teledentistry, only 50% of the prisoners 
received this examination, whereas with teleden-
tistry they all received it, leading to an appropriate 
care plan and, presumably, treatment.8

A rich digital dataset is fundamental in dental 
education. As beginner students we are taught 
how to acquire and record the data that is inte-
grated into the EPRs, and how to take and inter-
pret radiographs. In the more progressive schools, 
beginner students also learn how to take, record, 
and interpret digital photographs and intraoral 
scans. Students not exposed to these newer tech-
nologies often learn them on special courses of-
fered by their peers, universities, or corpo-
rate-sponsored courses. Without question, the 
information intrinsic to a digital dataset is essential 
to every clinical practice.
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1.3 CAD/CAM

CAD/CAM has revolutionized dentistry. The earliest 
systems digitally mapped tooth surfaces, and sys-
tem users created restorations (originally only in-
lays and onlays) on displayed images of that 
mapped topographic data. The design was then 
manipulated by programs that could fabricate a 
restoration (either by milling or spark erosion).1,6,16 
Evolution of the CAD/CAM systems, software en-
hancements, technical innovations in fabrication 
systems, and materials science has been remark-
able. Now, CAD/CAM systems incorporate both in-
traoral and facial digital data (e.g. incorporating 
smile design as part of restoration design), and can 
produce an array of products including restor-
ations, full and partial dentures, dental appliances 
(e.g. bite plates, orthodontic positioners, etc), casts, 
surgical guides and splints, surgical casts to ‘prac-
tice’ surgical techniques, and tissue and organ scaf-
folds. Materials that can be fabricated include met-
als, resins and composites, wax, hydroxyapatite, 
and various biologics. Open architecture allows 
components from different manufacturers to be 
assembled into a system, essentially creating high-
end ‘plug and play’ options, where individual com-
ponents that best fit the needs of a practice or la-
boratory can be selected and connected to create a 
functional system. (Chapters 6, 7, and 15 provide a 
more in-depth discussion of CAD/CAM systems and 
bioprinting. Chapters 8 and 9 discuss digital restor-
ation design and fabrication.) 

One application of CAD/CAM systems that 
seems to be overlooked is delivery of care to un-
derserved areas. Many CAD/CAM systems are de-
signed to produce restorations chairside, making 
one-appointment restoration a reality. These sys-
tems are generally relatively small, so they would 
fit into a mobile clinic. As such, they could become 
part of the treatment possibilities offered to other-
wise underserved areas. It seems feasible that res-
toration of teeth that otherwise, for expedience, 
are often simply extracted, can now be a reality, 
even in underserved regions. The implications of 

this for general health and quality of life are 
significant.5,10 

1.4 Haptics and simulators in 
education

Haptics – creating a realistic sense of touch to the 
user in a virtual environment – has been used in 
many applications, including caries detection and re-
moval,18,20 prosthodontics,7 periodontics,13 and gen-
eral learning of requisite manual skills.2,9,15,19 Simu-
lators, capitalizing on digital technology and robotics, 
have now reached an amazing level of sophistica-
tion. At least one, Dentaroid (Nissin Dental Products, 
Kyoto, Japan), has a simulator that looks – and acts 
– like a live patient. It has over 20 patterns of dialog, 
allowing communication as if it was a real patient. It 
can simulate 10 different reaction movements, in-
cluding shaking its head and raising its hand in reac-
tion to pain, cough and vomiting reflexes, and 
 irregular pulse (see: http://www.nissin-dental.net/
products/DentalTrainingProducts/DentalSimulator/
dentaroid/index.html). Now, with these technolo-
gies, patient safety (always a concern) is less vulner-
able to mistakes a novice is inevitably likely to make 
while learning dentistry. Students enjoy working with 
the technologies, and outcomes of education are the 
same and/or better than with live patients. 

1.5 Summary
We are surrounded in our personal lives by digital 
devices including, cameras, computers, cellphones, 
television, internet, watches, lifestyle monitors, and 
a host of other things digital. I am surprised every 
time I hear “I can’t do digital” because we do it all 
the time. Now, digital dentistry has broadened the 
profession’s horizon and impact. CAD/CAM may be 
the first thing that comes to mind when we discuss 
digital dentistry. Without question, innovations in 
that area have been breathtaking. Digital dentistry 
is CAD/CAM plus considerably more. Digital data 
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that is now generated as part of everyday practice 
enables discussions with patients and professionals 
as never before. It offers options for practices to 
market themselves differently, evaluate their effica-
cy and efficiency, and automatically manage their 
inventory. Education has been and continues to be 
transformed by innovations in how we teach and 
how we learn. We are able to reach populations 
where it was never before possible, improving their 
oral, and thereby systemic, health and quality of life. 
The explosion of digital technology, with its prolifer-
ation into smaller and smaller, higher resolution, 
and ever more lifelike simulations, has delivered 
fresh and novel ways of thinking, learning, and deliv-
ering dentistry. Digital dentistry has unquestionably 
already broadened, and will continue to broaden, 
the horizon, impact, and delivery of dentistry.
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Chapter 6

6.1 Introduction

Computer-aided design/computer-aided manufac-
turing (CAD/CAM) has created a paradigm shift in 
dentistry, enabling a whole new way of designing 
and fabricating restorations, models, and various 
appliances. A few years ago it would have been 
much simpler to create a chapter about CAD/CAM 
systems. At that time, only a few systems existed, 
and most were fully integrated, stand-alone sys-
tems. Now, with technological innovations, things 
are much more complicated and interesting. 

This chapter outlines the fundamental principles 
behind CAD/CAM systems, briefly describes the 
evolution of the concept, and then explores mod-
ern CAD/CAM system components and the val-
ue-added benefit they bring to dentistry. More em-
phasis will be placed on additive manufacturing 
(AM) than on other system components, since it is 
one of the newest technologies to be integrated 
into the CAD/CAM ‘family.’ The breadth of dental 

devices that can now be fabricated from digital 
workflow and technological evolutions is also sum-
marized. Since the transformation from conven-
tional to digital workflows comes with a cost, ap-
proaches to the economic analysis of the cost 
effectiveness of CAD/CAM are considered.

6.2 CAD/CAM fundamentals
CAD/CAM fundamentally employs three steps: data 
acquisition, ‘part’ design, and ‘part’ fabrication 
(Fig 6-1). These three functional components are 
linked together through shared software communi-
cation. Historically, these three components were 
fully integrated into one complete system, making 
the interfaces between components transparent to 
users (known as closed architecture). Today, many 
of the functional components can be acquired sep-
arately, offering users the ability to choose the 
component that provides the functions that best fit 



64

III Manipulating the Digital Data

their practice or laboratory. This open architecture, 
enabled by standardized file transfer protocols, cre-
ates what might be considered ‘plug and play’ sys-
tems: components from different suppliers that can 
effectively communicate with each other. 

Data acquisition capitalizes on scanner techno-
logy, which transforms the geometry of the intra-
oral topography into digital data that can be pro-
cessed by a computer program. This digital data 
can be acquired through intraoral scanning or by 
extraoral scanning of impressions or casts (Chap-
ter 3 provides a broad discussion and overview of 
modern intraoral scanners).

‘Part’ design (e.g. crown, orthodontic appliance, 
bridge framework, models, etc) is accomplished 
with CAD software (discussed in more detail be-
low). This software creates files that are then 
transmitted to the CAM software, which in turn 
creates commands to fabricate the ‘part.’ 

Fabrication of the virtual/digital designed ‘part’ is 
achieved through either a subtractive manufactur-
ing (SM) or AM system (milling/grinding or 3D print-
ing, respectively).

Modern CAD/CAM components are remarkably 
robust, incorporating a number of features that 
facilitate the digital workflow.17 Complicating any 
discussion of modern CAD/CAM systems is the 
combination of ways that the components can be 
deployed. It is possible to accomplish all the steps 
in a dental office, offering one-appointment res-
torations. On the other end of the digital workflow 

spectrum, it is possible to send digital scan data 
directly to a laboratory where a ‘part’ is designed 
and fabricated. Or these functions can be achieved 
in any combination. It is also possible to capitalize 
on manufacturer-specific centralized production 
centers, where fabrication may be more cost effec-
tive because of their high throughput and highly 
accurate fabrication systems.22 Additionally, work-
flow can incorporate both digital and conventional 
processes (Chapter 9 gives examples of conven-
tional vs partially or mostly digital workflow for 
crowns, implant-supported restorations, and 
dentures). 

The beauty of today’s technology and available 
systems is that data can be quickly and reliably 
transferred and shared, capitalizing on multiple 
CAD/CAM components within the workflow. The 
reader should note that there has been tremen-
dous innovation in CAD/CAM technology. Except for 
a brief background summary of how the systems 
evolved, the focus in this chapter is primarily on the 
literature since 2013, complemented by informa-
tion available from websites and manufacturers. 

6.3 Short history: how did we 
get to where we are now?

As early as the 1940s, a number of groups began 
focusing on the integration of engineering applica-
tions of automation for the creation of dental pros-
theses. Inventors at the Oak Ridge National Labora-
tory, Tennessee, invented one of the first coordinate 
measuring machines, a major step in being able to 
capture topography digitally, although this was ac-
complished through the translation of the position 
of a contact probe into x, y, and z coordinates.45 In 
parallel, scientists at Hughes Research Laboratories 
discovered ways to harness light in certain intensi-
ties, creating the first laser in 1960. Together, these 
set the stage for modern CAD/CAM systems. 

In the 1970s, a number of groups became more 
focused specifically on dental applications. In 1973, 
Francois Duret conceptualized how digital techno-

Fig 6-1  CAD/CAM functional components.
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logy used in other industries could be adapted to 
dentistry, such as for digital impressions made ei-
ther directly in the mouth or indirectly by scanning 
a model.36 He went on to become the first person 
to publish a treatise proposing principles that ulti-
mately became integrated into one of the first CAD/
CAM systems to be demonstrated.13,14 In 1977, 
Bruce Altschuler’s group in the US army combined 
laser technology with the principles of holography 
to digitally record the geometry of a molar occlusal 
surface, and then reproduced that surface with a 
numerically controlled milling machine.59,62 Inter-
estingly, in this early paper, the authors suggest 
that future developments are limited only by imagi-
nation – and what imagination there has been in 
digital dentistry!

A number of others, including researchers in Ja-
pan and at the University of Minnesota, were chas-
ing the same dream of developing systems.26,49-52 
Though these systems never reached the market, 
concepts and approaches proposed before compu-
tational power could deliver them have been inte-
grated into current systems. 

The first major commercial system evolved from 
the work at the University of Zürich, led by Werner 
Mörmann and Marco Brandestini, creating what 
was to become the Cerec system. Their method, de-
scribed in 1980, was used to treat the first patient 
in 1985, and in 1987 the first commercial system, 
Cerec 1, became available.39,40 The name was de-
rived to reflect its function as the first Chairside 
Economical Restoration of Esthetic Ceramics. 
Cerec 1 could only produce inlays. With ever-in-
creasing innovation, combined with computational 
prowess and speed, a host of new releases have 
ensued, and the Cerec system continues to gain 
popularity. Thirty years later, there are now more 
than 150,000 systems worldwide.21 

The first laboratory-based CAD/CAM system was 
Nobel Biocare’s Procera.6,44 In 1983, Matts Andres-
son developed the Procera method for high- 
precision industrial manufacturing of dental 
crowns, employing imaging and subtractive fabrica-
tion. Through continuous development, by 1989 

additional functions and approaches toward achiev-
ing excellent esthetics were introduced, demon-
strated by the milling of the first ceramic CAD/
CAM-produced coping.47

Much of the early CAD/CAM evolution centered 
on chairside systems, largely due to the appeal of 
same-day dentistry to both clinicians and patients.36 
Coincidentally, the closed architecture of these sys-
tems made it much easier for manufacturers to 
troubleshoot, maintain, and repair restorations as 
well as facilitate user training. 

The first systems catalyzed the evolution of a 
host of systems. While early chairside and labora-
tory systems both capitalized on SM (milling and 
grinding) to fabricate restorations, now AM (3D 
printing) has become a viable alternative for some 
applications, and some CAD/CAM systems focus 
on producing in-practice chairside restorations. 
Others focus on shifting the digital workflow to the 
laboratory. And still others support seamless in-
terconnectivity between the practice and the 
laboratory.

6.4 CAD/CAM systems 
overview

As described above, the three functional compo-
nents that create a CAD/CAM system are data ac-
quisition, ‘part’ design, and ‘part’ fabrication. With 
open architecture, it is possible today to create a 
CAD/CAM system by connecting functional compo-
nents from different suppliers. One of the few fully 
integrated closed systems is the Cerec system, on 
the market now for over 30 continuous years, due 
in part to its continually improving and expanding 
functionality. But now even the Cerec brand has ex-
panded, offering individual components with open 
architecture, providing flexibility to both clinicians 
and laboratories. So what is the big deal about 
open architecture?
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6.4.1 Open vs closed systems

Historically, CAD/CAM systems were only available 
as complete stand-alone systems, integrating a 
data acquisition scanner, design software, and mill-
ing machine into one package. Components, other 
than those provided by the original manufacturer, 
could not be substituted (Fig 6-2). This has now be-
come known as a closed system approach. The 
greatest advantage of such an approach is that the 
software and hardware were perfectly married to 
each other. With this arrangement, system interfac-
es could be optimized, providing a number of ad-
vantages.17 For instance, manufacturers could pro-
vide training on their proprietary system. Upgrades 
and preventive maintenance and repairs could be 

managed and controlled by the original manufac-
turer. Originally, only closed systems could provide 
single-session treatment, an option greatly valued 
by many patients and clinicians. Unfortunately, the 
disadvantage of closed systems is that they can be 
expensive because all the components are fully in-
tegrated. Should a single functional component fail, 
it is possible that the entire system would need to 
be replaced. Furthermore, innovations from manu-
facturers other than the original one cannot be 
integrated.

With the proliferation of innovations in CAD/
CAM, combined with the standardization of digital 
file formats, open systems are now available. Con-
ceptually, this is a high-end equivalent of ‘plug and 
play’ (Fig 6-3). A preferred scanner system can be 

Fig 6-2  Components of the 
earliest CAD/CAM systems.

Fig 6-3  Modern open-archi-
tecture CAD/CAM systems.
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connected to preferred software, which can subse-
quently drive the preferred fabrication system. 
Open systems permit customization for the needs 
and preferences of clinicians and laboratories. They 
also enable specific components of the CAD/CAM 
suite to be physically separated. For instance, a clin-
ician may choose to have only a scanner in-house 
and export all data to a laboratory for design and 
fabrication, rather than having all functions in-of-
fice, as would be the case with a closed system. 
Clearly, this has advantages for flexibility in defining 
an appropriate digital workflow, ranging from fully 
within a practice to a shared practice-laboratory 
workflow. Importantly, it becomes less costly to up-
grade selected components to capitalize on the lat-
est innovations, since only individual components 
need to be replaced (rather than the entire system). 
The disadvantage of open systems is that a number 
of suppliers/manufacturers may be involved, mak-
ing it more challenging to troubleshoot problems, 
potentially more complex for users to become 
trained on multiple individual components, and 
more complicated to identify the contact for re-
pairs, should they become necessary.

6.4.2 Data acquisition
Intraoral scanners, the in-practice intraoral data ac-
quisition systems, are reviewed and described in 
Chapter 3. It should be remembered that a number 
of laboratory-based scanners exist, providing capa-
bilities to scan conventional impressions or models 
provided by clinicians. However, these are not in-
cluded in this chapter’s discussion. Nonetheless, all 
scanners accomplish the same function of translat-
ing physical characteristics and topography into 
digital data that can subsequently be used to de-
sign the desired dental components. 

6.4.3 ‘Part’ design – CAD software
CAD design systems, originally difficult to use and 
extremely limited in scope, have evolved to be 
amazingly user friendly, comprehensive, and ro-

bust. Their scope seemingly expands almost daily. 
Consequently, it is not realistic to describe individ-
ual CAD design systems. Rather, the following is a 
description of the complementary elements that 
have been incorporated into various systems, and 
the types of dental ‘parts’ that can be designed and 
produced. Without question, few CAD design sys-
tems accomplish all the functions described, but it 
is hoped that the reader will be informed about 
what is possible, and use the list as a guideline 
when selecting a CAD or CAD/CAM system – and 
perhaps encourage the software creators to add 
functions that the reader needs but finds missing.

With industry-wide agreement in file format 
from which design begins, usually .stl, open-design 
software can interface with multiple scanners. 
Clearly, this adds to the flexibility of the clinician or 
laboratory when deciding which combination of 
CAD/CAM components are most ideal for their par-
ticular situation. 

The portfolio of indications possible with CAD 
software begins with the traditional crowns and 
bridges, inlays, onlays, and bridges. Beyond that, 
based on an amalgamation of information from 
manufacturers’ websites, the breadth of prostho-
dontic indications expands to copings and bridge 
frameworks; inlay/onlay bridges and veneers; posts 
and cores, telescopic crowns; customized abut-
ments; implant bridges and bars, including second-
ary structures; and digital temporaries, including 
those for bridges with pontics. The list goes on to 
include implant planning and design of surgical 
guides; removable partial dentures (RPDs); and 
denture design, including impression trays. In addi-
tion, software can create virtual diagnostic wax-ups, 
physical models, splints, and orthodontic applian-
ces and positioners. 

As the software becomes increasingly robust, 
more and more features become automated or 
partially automated, speeding up the design pro-
cess while affording flexibility and individual prefer-
ences to be accommodated. One of the earliest au-
tomated features was margin line definition. Points 
defining the margin line are suggested  automatically, 
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but can then be interactively moved to accurate 
positions, redefining the margin line. 

Multiple features now incorporated into the 
software further enhance its user friendliness. 
Again, drawing from the website information of a 
series of manufacturers, these features include au-
tomatic ‘first approximation’ suggestions for design. 
Some even suggest color-matching schemes. Oth-
ers include onscreen guides to prompt sequences 
or options that should be considered to more near-
ly optimize a ‘part.’ Still others incorporate libraries 
of tooth shapes – pulling a tooth shape from the li-
brary speeds restoration design and provides the 
general shape of the tooth. The software automati-
cally suggests the initial placement of the tooth. 
Then, both the position and shape of the restor-
ation can be interactively modified to accommo-
date the patient’s unique requirements, and the 
software sculpts the restoration in the new shape. 
The latest Cerec software has taken this to a new 
level with the ‘biojaw process.’10 This software capi-
talizes on the biostatistical procedure of generating 
a proposed patient-specific initial restoration based 
on the scanned teeth.

Software packages may also include implant lib-
raries, allowing the clinician or technician to auto-
matically accommodate the implant size, shape, 
and screw placement into the restoration design. 
Still other packages may include libraries of attach-
ment designs for RPDs.

Throughout the ‘part’ design process, the soft-
ware permits distance measurements to be easily 
viewed. This feature is particularly important when 
considering required or recommended material 
thicknesses. Some programs include warnings and/
or enforcement of minimum thickness require-
ments for materials specified for the restoration 
being designed.

Occlusion is of paramount importance in restor-
ation design. Virtual articulators are now standard 
in many CAD software packages. Both static and 
dynamic contract surfaces can be determined to 
achieve correct functional occlusion. The software 
shows the complete paths of motion. A virtual in-

cisal pin permits the vertical dimension to be incor-
porated in the design. Mouse clicks permit adjust-
ments desired by the clinician or technician. With 
the advent of computer-aided denture design, this 
feature becomes increasingly important. 

Many software programs can now accommo-
date and integrate data from multiple digital sourc-
es. For instance, it is possible to see a cone beam 
computed tomography (CBCT) scan superimposed 
onto intraoral data, perhaps even also adding the 
facial scan data.

A relatively new CAD innovation is the addition 
of smile design. This feature is a valuable adjunct 
for situations where esthetics is of paramount im-
portance. It usually also provides an image that can 
be shared with the patient, permitting the clinician 
and patient to agree that the tooth shape, position, 
and color are mutually acceptable (an example of 
this is included in Chapter 8). 

Some software also integrates case manage-
ment. This tracks the progress of each stage of ‘part’ 
design, fabrication, and delivery to the patient. It 
also permits patient- and restoration-related data 
to be permanently stored. 

CAD need not be limited exclusively to fabricat-
ing finished restorations. Some materials of choice 
still demand casting. In some cases, a CAD wax pat-
tern may be fabricated using CAM, permitting sub-
sequent casting. Other CAD packages can create 
casting ‘trees’ to be designed, permitting multiple 
wax patterns to be cast together. Each pattern has 
its own sprue and casting button. 

Creating a virtual design not only sets the para-
meters for fabrication, it also enables a new di-
mension in communication. A patient can envision 
what a final restoration will look like. This may be 
valuable in the patient’s ultimate decision to have 
a restoration and/or satisfaction with the final re-
sult (Chapter 19 provides a clinical example). Fur-
ther, a design can be projected onto multiple 
screens, even when the screens are miles apart. 
Clinicians and laboratory technicians can discuss 
the case. In certain situations, the digital design 
may be valuable to consultations between  clinicians. 
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Or  perhaps, in the restoration of a dentition associ-
ated with cleft palate or craniofacial surgery, multi-
ple clinicians and the technician can all be engaged 
in discussing the most ideal approaches.

Without question, the design software user 
must fully understand the underlying principles of 
the design of the ‘part’ being constructed, whether 
by conventional processes (e.g. waxing up a crown) 
or in virtual space as part of the digital workflow. 
The operator using the software must still ensure 
that the design is appropriate. Hence, even though 
features may be automated, many operator inter-
ventions may be required to perfect the design for 
an individual patient.

6.4.4 Fabrication – CAM software
Fundamentally, CAM software transforms the CAD 
‘part’ into instructions to drive fabrication. The CAM 
software may be an integral part of the CAD system 
or it may be separate. The software is generally not 
transparent to the user but is integral to the fabrica-
tion machine. Specific details of what the software 
manages are a function of the fabrication technology 
and material to be fabricated. The software estab-
lishes and controls a host of parameters of the fabri-
cation hardware, including spindle speeds, cutting 
tool offsets, and depth of cut for milling operations 
as well as layer thickness for 3D printing. All of these 
are also tied to the handling characteristics of the 
material being fabricated. These and other CAM soft-
ware set parameters significantly influence the qual-
ity and finish of the ‘part’ being fabricated.

6.4.5 Fabrication – subtractive 
manufacturing (SM)

As the name implies, SM begins with a block of mater-
ial, much of which is removed to craft a desired shape. 
In dentistry, this most often refers to milling and/or 
grinding (for convenience, they will be referred to as 
milling machines in the subsequent discussion).

Milling machines for dental products can be 
found in practices, laboratories, and dental produc-

tion centers. Generally, those found in practices are 
small, desktop-size units. Those in large laborator-
ies and production centers can be substantially 
larger and are likely to have a higher production 
capacity (an in-depth comparison of chairside and 
laboratory milling machines can be found in Lebon 
et al,28,29 and Zaruba and Mehl).63 

The earliest milling machines used in dental 
CAD/CAM systems were among the simplest de-
signs, offering only three axes: two (the x and 
y axes) moved the bed horizontally, and one (the 
z axis) moved either the bed or the spindle – which 
holds and drives the cutting tool – vertically. With 
these, it was impossible to machine anything that 
had an undercut. Hence, these machines were lim-
ited to producing only inlays and onlays. 

To machine a crown, of course, it is necessary 
for the cutting tool to reach a point on the surface 
below the height of contour (called the parting line 
in industrial machining). This can be achieved by 
flipping over the part being fabricated, cutting first 
the ‘top’ and then the ‘bottom.’ These are generally 
referred to as 3.5-axis machines.

As dental-based milling machines advanced, a 
fourth axis replaced the 3.5-axis machine, permit-
ting the bed holding the workpiece to be tilted at 
various angles (as opposed to only flipped, as with 
the 3.5-axis machines), permitting more complex 
‘parts’ to be successfully milled. This approach is 
called indexed milling, since the bed incrementally 
tilts and pauses while the tool lifts and is repos-
itioned into a new cutting position.33 

Still later, some machines incorporated a fifth 
axis, making it possible to rotate the bed holding 
the workpiece around its centerline. This modifica-
tion, called continuous milling, permits the cutting 
tool to remain in constant contact with the work-
piece while the rotary fifth axis does the work of 
moving the workpiece to the required position.33 
With this additional axis, machining operations 
can be faster than with 3-, 3.5- or 4-axis machines. 
The versatility of a 5-axis machine allows produc-
tion of the most complex ‘parts’ (e.g. implant screw 
retention holes at any angle, complex bars and 
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 substructures, etc). While at first glance this config-
uration would appear to be the most ideal for com-
plex dental ‘parts,’ the cost of the change can be 
remarkable; at least in industrial settings, a 5-axis 
machine may be 1.5 times more costly to acquire 
than a 4-axis machine.33 Generally, the more com-
plex the machine, the more complex and costly the 
software. Maintenance also becomes more costly, 
and the potential increases for positioning errors to 
 accumulate across all the axes. 

The real concern for any type of SM is whether 
the ‘parts’ produced are accurate. Do the dimen-
sions of the final part accurately reflect the design 
dimensions? Crowns, inlays, and onlays fabricated 
from ceramic blocks on two different 5-axis and 
two different 4-axis machines were compared. In-
ner surfaces were more accurate when fabricated 
with 5-axis than with 4-axis machines, but values 
from two of the 5-axis machines and one of the 
4-axis machines were essentially identical (ranging 
from 32 ± 9.7 µm to 34.4 ± 7.5 µm).27 A second 
4-axis machine in the same study did less well with 
inner accuracy trueness (62.1 ± 17.1 µm). When 
comparing occlusal surface trueness, the 4-axis 
machine outperformed all the others, with a 
25.7 ± 9.3 µm difference relative to the standard 
configuration (it was also the machine with the 
best internal surface trueness). Data was reported 
for only one of the two 5-axis machines. It and the 
other 4-axis machine produced similar occlusal 
surface trueness values (40.9 ± 20.4 µm and 
48.7 ± 23.3 µm, respectively). Interestingly, the 
greatest amount of chipping resulted from one of 
the 5-axis machines. It is notable that all the values 
are well within the acceptable range for conven-
tionally produced restorations. A different study 
found that a better fit of RPD clasps was achieved 
with milling techniques than with conventional 
casting techniques7 (additional information about 
milled restorations created from intraoral scan 
data is included in Chapter 3). Interestingly, an 
equal or better restoration fit can be achieved with 
machined restorations than with those fabricated 
by conventional methods.

A number of companies offer milling machines, 
and it is anticipated that many include periodic new 
innovations. Many of these machines are well known 
and have been available for some time. Individual 
listing of them, with one exception, is beyond the 
scope of this chapter. A fascinating alternative to the 
standard milling machine configuration, introduced 
by Ivoclar Vivadent at the 2017 IDS meeting,48 is an-
ticipated to be commercially available in 2018. A se-
ries of four models, among the smallest in the world, 
are intended to address demands ranging from 
practices to laboratories. This reconfigured 5-axis 
machine has the part being milled moving to a fixed 
(but rotating) spindle, with the workpiece rotating 
around the cutting tool. This configuration stiffens 
the spindle, potentially improving the accuracy of 
the machining operation. Together, the innovations 
in this series of milling machines shorten milling 
times and minimize tool wear. A molar crown was 
advertised as being milled in 12 minutes, and within 
17 minutes for the finest details.19 The prac-
tice-based version is wireless; tablet and smart-
phone apps enable it to be operated from any loca-
tion. An optical status display reports the current 
machine status. Laboratory-based machines have 
an integrated PC with a touch-screen monitor. Ma-
terial and tool changers work in unison, so the fabri-
cation process proceeds independently and without 
interruption. Management of the contents of the 
material changer and tool magazine is centralized, 
ensuring the correct milling strategy is employed.

Table 6-1 (pages 72 to 73; footnote page 74) 
summarizes sources and capabilities of subtractive 
fabrication machines. 

6.4.6 Fabrication – additive 
manufacturing (AM)

Fundamentally, AM involves creating three-dimen-
sional (3D) objects by building materials layer upon 
layer, enabling 3D objects to be ‘printed’ on de-
mand.8,18 Originally, 3D printing referred to a process 
employing standard and custom inkjet heads.57 Now 
the term is used interchangably to describe AM. 
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The original concept underlying AM began in 
1860, when a French artist created 3D replicas by 
arranging an object on a platform surrounded by 
24 cameras that recorded the profile every 15 de-
grees. Then, 24 cylindrical portions of the subject 
were separately carved and arranged to create a 
3D portrait.64 In 1890, another dreamer developed 
a layer technique to create topographical relief 
maps by stacking individual plates, each with a 
unique geometry, onto each other. Modern AM 
took a bit longer to evolve, and was first founded 
by Munz in 1951, who selectively exposed and 
hardened a transparent photopolymer to create a 
3D object. Later, others followed, fashioning 3D 
objects using a number of different approaches. 
Then, in 1986, Charles Hull’s patent for the produc-
tion of 3D objects using stereolithography (SLA) 
hailed the advent of commercially available AM 
systems.20 Now, existing technologies can funda-
mentally be divided into two families: those that 
squirt, spray or squeeze liquid, paste or powdered 
raw materials through some kind of syringe or 
nozzle, and those that bind raw materials using a 
laser or adhesion. Chapter 7 overviews the history 
and describes the various current approaches, 
along with their advantages and limitations. The 
challenging issue with AM is that material options 
are intimately tied to the system’s technology; 
most systems can only handle one class of mater-
ial (e.g. photopolymers or metals). For further as-
sessment of material compatibility with 3D print-
ing, see both Chapter 7 and reviews by Prasad et 
al46 and Stansbury and Idacavage.58 

AM is an innovative, highly flexible manufactur-
ing technology with a great deal of geometrical 
freedom.38 Personalized, one-off products such as 
those used in dentistry are perfect for AM process-
es. The technology has broad applications and 
permeates a number of industries. Already, there 
are a surprising number of products outside of 
dentistry that are produced by AM, ranging from 
minute, highly complex products, to scaffolds for 
human organs, to fully functional racing cars and 
multistory apartment buildings.30,55,60 In-ear hear-

ing aids are now almost entirely produced by 
AM.53

As ‘parts’ are built up by layers, AM creates less 
waste material than SM, where fabrication begins 
with a block that has excess material cut away, all 
of which is generally not reusable. With layers of 
material being built up, unused material remains 
in its original form, and most of it can be recov-
ered for use in subsequent builds. In industrial set-
tings, estimates suggest that between 95% and 98% 
of 3D printing materials not incorporated into the 
part being fabricated can be recycled and reused.18 
This may have important economic implications for 
dental applications, as materials required for oral 
restorations and appliances can be expensive. 

3D printing, a term often used interchangeably 
with AM, brings new opportunities to dentistry. 
Founded in 1997, Invisalign was one of the first 
companies to leverage 3D printing in dentistry, 
printing 3D models of successive tooth positions 
upon which their aligners were fabricated.23 Today, 
indications for 3D printing in dentistry cover an ex-
ceptionally broad range, including everything from 
simple models and wax forms to more complex, 
long-term, tooth-colored temporaries and metal 
structures as well as temporary and permanent dig-
itally manufactured full dentures22 (discussed fur-
ther in Chapter 9). 

Twenty-five 3D printers were demonstrated and 
introduced at the 2017 IDS meeting.19,37 Unique 
features of these systems are summarized in Ta-
ble 6-2 (pages 75 to 79). Table 6-3 (page 80) summa-
rizes the advantages and challenges associated 
with AM.

What is the quality of 3D-printed restorations? 
Intraoral restorations fabricated by AM have been 
shown to be as clinically acceptable as those pro-
duced with conventional techniques. A number of 
studies have shown that there is no significant dif-
ference between intraoral restorations produced 
by conventional techniques and those produced by 
scanning and AM.9,15 3D-printed interim crowns fit 
better than those produced by SM.32,35 3D-printed 
drill guides can be accurate to within 0.25 degrees 
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of planned implants.41 3D-printed zirconia implants 
can be accurate to within 100 µm of design values, 
with a flexural strength nearly identical to conven-
tionally produced implants, though optimization is 
needed for the implant printing to remove cracks, 
microporosities, and interconnected pores (ranging 
from 196 mm to 3.3 µm).43 

A study of full-crown models fabricated by four 
different 3D printers (one thermofusion, one multijet, 
and two SLA-based) reported that the surface finish 
was influenced by the method by which layers were 
cured and the thickness of the layers, with smaller 
steps producing smoother surfaces.24 Dimensional 
deviations from design values ranged from +18 µm 
to -277 µm for crown outer diameter, from -343 µm 
to +162 µm for crown inner diameter, and from 
-646 µm to +46 µm for crown depth. In general, 
less-expensive printers offered inferior precision. Ad-
ditionally, deformations from the true values de-
pended on the material being printed (e.g. monomer, 
which contracted during laser polymerization), and 
the method by which the layers were laid down (e.g. 
compression in extrusion led to expansion of the out-
er diameter). Notably, these deviations, when known, 
can be compensated for by CAD and/or CAM soft-
ware before fabrication, just as ceramic shrinkage 
during firing is compensated for in CAM fabrication 
and in conventional ceraming processes. 

3D-printed RPD patterns, subsequently cast, de-
livered clinically acceptable clasp accuracy for Ken-
nedy Class I, II, and III designs.31 It has been pointed 
out that the direction of the build relative to the res-
toration surface can influence both dimensional ac-
curacy and mechanical properties of a fabricated 
‘part.’3,4,42 

3D-printed casts and gypsum casts have nearly 
identical accuracy, with over 90% of all reference 
points within 50 µm of the true value and smooth-
ness values (RMS), all less than 30 µm.9 However, 
3D-printed casts were not as good as traditional 
stone casts for orthodontic evaluation of degrees of 
crowding.61 

A particularly interesting double-blind cross-
over in vivo study evaluated RPDs for 12 patients.5 

Footnote to Table 6-1 (pages 72 and 73)

+ Some materials are specific to certain milling machines, 
information is provided only by generic class (e.g. Vita Enamic is 
approved to be milled on some machines but is shown below as one 
of many composites. Specific details about specific materials tend to 
change rapidly; it is therefore suggested that the reader check with 
the manufacturer before definitively deciding on a purchase).

++ If no value is given, the number of tools is not specified in the 
literature or websites. 

* Coming soon. All materials may not be available in all markets. 

** 5.0 DC has disc changer. 

*** Uses laser ablation to remove material.

*# The M1 machine has various versions: abutment, soft, wet, and 
heavy metal. What can be cut depends on the version. Interestingly, 
wood is listed on the website as one of the materials some of these 
versions can cut.

References for Table 6-1:

Lebon N, Tapie L, Duret F, Attal JP. Understanding dental CAD/CAM 
for restorations – dental milling machines from a mechanical 
engineering viewpoint. Part B: labside milling machines. Int J Comput 
Dent 2016;19:45–62.

Zaruba M, Mehl A. Chairside systems: a current review. Int J Comput 
Dent 2017;20:123–149. 

Amann Girrbach: https://www.amanngirrbach.us/home/ and /www.
amanngirrbach.us/fileadmin/_agweb_2013/media/mediathek/Print/
Catalogues_Brochures/Brochures/EN-USA/Ceramill_Units_
Broschuere_EN-US.pdf

Carestream: http://www.carestreamdental.com/us/en/mill/CS%20
3000#Features and Benefits

Datron: http://www.datron.com/cnc-machines/d5.php and http://
www.datron.com/dental-milling.php and http://www.dentalcompare.
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Each patient was delivered two dentures, one with 
a cast framework and the other with a 3D-printed 
(laser-sintered) framework. Patients alternated 
wear every 30 days for a total of 4 weeks. The ini-
tial denture for each patient was determined ran-
domly. Patients preferred the 3D-printed dentures 
for overall satisfaction, ability to speak, ability to 
clean, comfort, ability to masticate, masticatory ef-
ficiency, and oral condition. Esthetics was the only 
factor that was not more satisfying with the 
3D-printed version (there was no statistical differ-
ence between denture types regarding this factor). 
At the end of the study, 5 of the 12 patients pre-
ferred the denture with the 3D-printed framework 
(4 of the 5 had this as their first denture), 1 patient 
preferred the cast framework, and 3 patients had 
no preference. The most common complaints relat-
ed to fit and retention, soft tissue ulceration, and 
mastication problems, but fewer patients with the 
3D-printed framework complained. The 3D-printed 
cobalt-chromium (CoCr) alloy, compared with a cast 
version of the same alloy, is harder and denser and 
has better microstructural organization, and both 
yield strength and ultimate tensile strength are 
higher. The investigators suggest that these factors 
together were likely to have contributed to im-
proved clasp retention and denture stability. 

Alharbi et al2 critically reviewed AM techniques 
in prosthodontics. While this review is comprehen-
sive, including both in vitro and clinical studies, it 
considers literature going as far back as 1990. Giv-

Table 6-3  Advantages and challenges associated with AM 

Advantages Challenges

 � Direct production from 3D CAD models means no molds 
are required 

 � Materials in additive processes often permit reuse of 
‘wasted’ materials (e.g. powdered metal or ceramic, 
resin) 

 � Toolless, so no need to compensate for tool size to 
configure intaglio surface of restorations 

 � Permits CAM of dental restorations and appliances 
impossible to fabricate with SM operations

 � Offers potential to rethink design of restorations and 
appliances

 � Cost and speed of production (the cost of the machine is 
the major cost, not materials and/or labor)

 � Changing the way designers think about and approach 
the use of AM

 � Development and standardization of new materials
 � Validation of long-term clinical performance of AM 

restorations/appliances
 � Postprocessing finishing (also often needed for milled 

restorations)
 � Fugitive support material may be needed to build some 

areas of restorations (e.g. to support the creation of the 
otherwise unsupported occlusal surface of a crown)

en the explosive innovations in AM technology, 
some of the studies considered may no longer be 
particularly relevant. Stansbury and Idacavage58 
comprehensively overviewed the fabrication of 
polymer materials by various AM approaches. 
Both studies conclude that AM is promising and 
offers new possibilities for dentistry, while point-
ing out that understanding current limitations, 
coupled with developments in materials science, is 
crucial to this fabrication approach being fully 
exploited. 

Improvements in AM for dentistry are still need-
ed. Post-printing finishing is still generally required, 
largely to eliminate the lines defining discrete layers 
intrinsic to the build process. At the moment, ma-
terial choices are still limited, but new materials 
are being developed.56 It is anticipated that by the 
end of this year, the US Food and Drug Administra-
tion (FDA) will give clearance for the first 3D-print-
ed permanent restoration material, a nanoceramic 
infiltrated resin for temporaries, a long-term den-
ture case material, and a titanium-zirconia implant 
material.22 

The intrinsic flexibility of AM in building 3D 
 geometries has been argued to be a new industrial 
evolution: “Its fundamentals and working principles 
offer advantages including near-net-shape capabili-
ties, superior design and geometrical flexibility, in-
novative multi-material fabrication, reduced tooling 
and fixturing, shorter cycle time for design and 
manufacturing, instant local production at a global 
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scale, and material, energy and cost efficiency.” 64 
Not all of these advantages are operationalized yet 
in dentistry, and some of them may not be of par-
ticular value to the profession. This technology 
does offer a unique challenge to the profession. AM 
provides new opportunities for freedom of de-
sign.25 Some time ago, someone proposed that im-
plants need no longer be solid forms relying on the 
surface texture to enhance osseointegration. In-
stead, it was proposed that the submerged portion 
of the implant should emulate tree roots, provid-
ing open spaces throughout that portion of the 
structure for complete bony ingrowth.1 Perhaps it 
is time to rethink and re-engineer the design of 
many of the ‘parts’ we produce, no longer creating 
designs and cutting preparations to accommodate 
previous fabrication limitations, but instead capital-
izing on this new way to make our imagination the 
limitation.

6.5 Economic analysis/ 
cost models

CAD/CAM components have already changed the 
profession. The emergence of AM and the prolifer-
ation of intraoral and laboratory-based scanner of-
fers suggest even further change is inevitable. How-
ever, CAD/CAM components are known to be 
expensive. So how can a practice or laboratory as-
sess the economic impact of integrating CAD/CAM 
components?

A first consideration is how the CAD/CAM com-
ponents will be used, e.g. if one elects to use an in-
traoral scanner, one needs to decide if it will be 
used to completely replace conventional impres-
sions. If so, then the cost of the scanner, computer 
system, associated software, and time for staff 
training can be offset against the costs of impres-
sion material, trays, disinfection, production of 
stone casts, and sending either the stone casts or 
the impressions to the laboratory. Both material 
and personnel costs of all of the relevant activities 
need to be considered.

CAD/CAM fabrication can produce many, but 
not yet all, of the ‘parts’ patients may need, with 
clinical accuracies at least equal to that of their con-
ventionally produced equivalents. Due to this lim-
itation, clinicians and laboratories need to consider 
the types of ‘parts’ they already can or want to pro-
duce, particularly if it is perceived that CAD/CAM 
automation can increase their productivity and/or 
be an important marketing asset.

Few, if any, cost models for dental applications 
seem to exist. One that is available (https://www.
rolanddga.com/products/dental/dwx-series) fo-
cused on determining cost amortization for labo-
ratory-based milling. Another (http://www.kavo.
com/arctica/Amortization.aspx) focused on 3D 
printing. The costs associated with the acquisi-
tion and usage of intraoral scanners are included 
in Chapter 3. An online buyer’s guide for both 
professional and production applications of 3D 
printers is available at: https://www.3dsystems.
com/3d-printer-buyers-guide. 

Several cost models have been described for AM 
in large-scale manufacturing applications. While 
not explicit for dentistry, the models argue that 
consideration should be given to the recycling of 
waste materials, printing time for individual ‘parts’ 
as well as overall printing time for the machine in a 
given work time cycle, maximum number of prod-
ucts that can be printed simultaneously in the ma-
chine workspace, level of complexity of the ‘parts,’ 
duration of and level of expertise needed for post-
processing, and management methods for moni-
toring and protecting product and process quality. 
Time-driven, activity-based costing needs to be 
used, particularly since processes are mainly driven 
by processing time. Factors considered need to in-
clude those relating to labor, the machine itself, and 
the material to be used.12,54 While not dedicated to 
dental applications, these models may provide in-
sight for clinical and laboratory professionals and 
academic institutions.
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6.6 Summary

CAD/CAM’s simple fundamentals, interconnecting 
data acquisition, design, and fabrication have mor-
phed into an amazing array of options. The older, 
closed systems have largely been replaced by high-
tech ‘plug and play’ systems, permitting optimiza-
tion of both technology and user needs. Scanners 
now deliver high-quality, full-color intraoral images 
and accurate topographic digital data. Enhance-
ments in design software bring new levels of auto-
mation to CAD software, complementing the user’s 
understanding of dentistry’s principles, which re-
main critical. Fabrication technologies have prolifer-
ated, with advances in both SM and AM systems. 
From the literature, we see now that ‘parts’ fabricat-
ed by both SM and AM fabrication meet and some-
times exceed the accuracy of their conventionally 
produced equivalents.

Yet, despite the many advantages available with 
CAD/CAM technology, market penetration has not 
been as great as might be expected. Some of the 
reasons were articulated by the authors of a study 
querying UK laboratory technicians and dentists, 
from both private practice and the NHS, about us-
age, materials, perceived benefits, barriers to ac-
cess, and disadvantages of CAD/CAM dentistry.11 
The study showed that most laboratory technicians 
used some form of CAD/CAM in their workflow, 
whereas most dentists did not use any, and the few 
who did were primarily in private practice (though 
98% of all dentists believed that CAD/CAM would 
play an increasingly larger role in the future). Seem-
ingly, the primary deterrent for using CAD/CAM for 
both dentists and technicians was the high initial 
investment cost. Both groups also posited that 
CAD/CAM has driven changes in the choice of ma-
terials, shifting emphasis to an increase in zirconia 
and lithium disilicate and a decrease in noble alloys. 
It is likely that these factors are ubiquitous across 
the world.

One dynamic that is likely to accelerate CAD/
CAM utilization is the entrance into the profession 
of new dentists and technicians who have grown up 

with technology. Children grow up with ipads and 
cellphones, and now, many have access to AM in 
their school classrooms. Particularly interesting are 
innovations like the LEGObot, a 3D printer built 
completely out of plastic LEGO blocks,34 and hand-
held 3D stereo drawing pens already available on 
Amazon from a number of suppliers. The new den-
tal professional’s learning curve for CAD/CAM tech-
nologies is dramatically shorter than for many vet-
eran professionals. 

The initial cost of components remains a barrier 
at present. However, the fierce competition now 
evi dent due to the proliferation of new scanners, 
milling machines, and 3D printers is likely to have a 
positive effect. Of course, initial costs need to be 
weighed against costs that are eliminated by inte-
grating CAD/CAM into a laboratory or practice, and 
the potential marketing advantage the new techno-
logy can bring. 

The extraordinary innovations in CAD/CAM and 
the proven performance of existing systems build a 
valuable platform for future evolutions in materials 
science, virtual reality (VR), and ‘part’ design. There 
is no question that the future is going to be very 
interesting.
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