

Int Poster J Dent Oral Med 2002, Vol 4 No 3, Poster 133

International Poster Journal

Determining the Wear Resistance of Occlusal Splints in a Prospective Clinical Study

Language: English

Authors: Dr. med. dent. Peter Ottl, Dentist Petra Schmelz, Dr. med. dent. Andree Piwowarczyk, Prof. Dr. med. dent. Hans-Christoph Lauer

IP

Department of Prosthodontics, School of Dentistry, ZZMK (Carolinum), J. W. Goethe University, Frankfurt, Germany

Date/Event/Venue:

May 17-19, 2001 50th Annual Meeting of the "Deutsche Gesellschaft für Zahnärztliche Prothetik und Werkstoffkunde" Bad Homburg, Germany

Poster Award

Best Poster of Conference

Objective

To determine quantitatively the wear resistance of a newly developed light-curing splint resin over a period in situ of six months.

Materials and Methods

- Patients:
 - n=20 consecutive patients (mean age: 34.7 years; 12 F, 8 M)

• Inclusion criteria:

- Natural dentition/fixed denture
- · Complete dentition to at least the 1st molar

and

for the stabilization splint sample:

- Insufficient occlusal support
- Increased occlusal loss of dental hard tissue

for the distraction splint sample:

- TMJ pain and
- Complete anterior dislocation of the disk without reduction/with terminal reduction
- TMJ osteoarthrosis

Fig. 1: Stabilization splint in situ

- Resin splint material (Fig. 1):
 - · Light-curing (400-500 nm) resin made of high-molecular dimethacrylates with organic and inorganic fillers
 - Does not contain methyl methacrylate
- Study design:
 - Duration: 6 months
 - Types of splints (maxilla, n=10 each): stabilization splints, distraction splints
 - Splint wear mode: 24 hours
 - Examinations:
 - before insertion (BI), at 4 weeks (4W), at 3 months (3M), at 6 months (6M)

• Occlusal adjustments were restricted to the time before 4W.

Fig. 2: Test setup

- Measuring Technology (Fig. 2)
 - Vibration-isolated table framework
 - $\circ~$ 3 translation stages (for directions x, y, and z) (DC-Motor) (PI, Waldbronn)
 - DV 4 stereomicroscope (Zeiss, Oberkochen)
 - WA 20 inductive displacement transducer/ Spider8 digital 8-channel measurement unit/ Catman 32 software V2.1 (HBM, Darmstadt)
 - · Local coordinate storage for occlusal contacts during baseline measurements
 - Ten measurements each in regions 13, 23, 16, 26 (BI, 4W, 3M, 6M)
 - Splint repositioned on remount cast

Results

• The medians of the occlusal vertical gains/losses (wear, resin torsion, water sorption, etc.) are shown in **Fig. 3** (stabilization splints) and **Fig. 4** (distraction splints).

Fig. 4: Occlusal vertical gains/losses (medians) of the resin in vivo over a period in situ of six months (n=10 distraction splints)

• Statistical analysis (Mann-Whitney U-test, p < 0.05) showed no significant differences when comparing the corresponding results of stabilization and distraction splints.

Figs. 5a and b: Sagittal oblique images (MRI) of the condyle/fossa relationship without splint (Fig. 5a) and with distraction splint inserted (Fig. 5b) following six months of wearing

Conclusions

- The present study *clinically* confirms the good wear resistance results of the new resin splint material obtained in a previous *invitro* study [OTTL et al., Dtsch Zahnärztl Z 52, 342 (1997)].
- Good wear resistance is of great importance for maintaining the therapeutic mandibular position during the treatment period (Figs. 5a and b).

This poster was submitted by Dr. Peter Ottl.

Correspondence address: *Dr. Peter Ottl* Department of Prosthodontics ZZMK (Carolinum) J. W. Goethe University D-60590 Frankfurt Germany

Poster Faksimile:

