0,00 €
Zum Warenkorb
  • Quintessence Publishing Deutschland
Filter
1401 Views

Benachbarte Synapsen beeinflussen sich gegenseitig und sind wichtig fürs Lernen und Erinnern

Ein mathematisches Modell zeigt, wie Wechselwirkungen zwischen benachbarten Kontaktstellen von Nervenzellen das Lernen beeinflussen.

(c) Biozentrum, Universität Basel

Forscher am Biozentrum der Universität Basel und aus Österreich haben ein neues Modell entwickelt, das einen ganzheitlichen Blick darauf wirft, wie unser Gehirn lernt und bleibende Erinnerungen schafft. Die Studie beleuchtet, wie sich benachbarte Kontaktstellen von Nervenzellen gegenseitig beeinflussen. Dies ist für die Anpassungsfähigkeit des Gehirns an neue Erfahrungen entscheidend.

Im Jahr 1949 beschrieb der kanadische Psychologe Donald O. Hebb, dass die Verbindungen zwischen Nervenzellen im Gehirn stärker werden, wenn die Zellen zur gleichen Zeit aktiv sind. Die verstärkten Verbindungen (Synapsen) wiederum erleichtern die Signalübertragung. Lernen und Erinnern beruhen auf ebenjener Fähigkeit des Gehirns, die Verbindungen zwischen den Nervenzellen je nach Nutzung anzupassen.

Gegenseitigen Abhängigkeit der Synapsen

„Lange Zeit ging man davon aus, dass sich vor allem nur die Nervenverbindungen anpassen, die in direktem Kontakt miteinander sind“, erklärt Dr. Everton Agnes vom Biozentrum, Universität Basel. „Interessanterweise beeinflussen Synapsen, die sich verändern, auch die Synapsen in ihrer Nachbarschaft.“ Dieses Zusammenspiel lässt sich aufgrund seiner Komplexität nur schwer experimentell untersuchen. Gemeinsam mit Prof. Dr. Tim Vogels vom Institute of Science and Technology Austria hat Agnes ein theoretisches Modell entwickelt, um dieser gegenseitigen Abhängigkeit auf den Grund zu gehen. Die Arbeit erschien nun in Nature Neuroscience.

Synaptische Plastizität: Die Lernmethode unseres Gehirns

Jeder kennt es vom Sprachen lernen: Wenn wir uns neue Vokabeln immer wieder anschauen, können wir sie uns besser merken. Das liegt daran, dass die Nervenzellen, die diese Informationen verarbeiten, sich mit der Zeit stärker verdrahten. Die Anpassung an die Nutzung, sei es eine Stärkung oder Schwächung der Verbindungen zwischen Neuronen, nennt man synaptische Plastizität. Indem sich die Nervenzell-Netzwerke ständig verändern, können neue Informationen gespeichert und unwichtige wieder gelöscht werden. Dies ist die Grundlage allen Lernens.

Benachbarte Synapsen beeinflussen sich gegenseitig

Die Neuronen kommunizieren über anregende und hemmende Synapsen miteinander. So leiten erregende Synapsen ein Signal weiter, hemmendende dagegen blockieren die Signalübertragung. „Die beiden Synapsen-Typen agieren jedoch nicht unabhängig voneinander, vielmehr beeinflussen sich benachbarte Synapsen gegenseitig und passen die Stärke und Stabilität ihrer Verbindungen an“, sagt Agnes. „Mit unserem Modell konnten wir beispielsweise zeigen, dass Interaktionen zwischen benachbarten erregenden Synapsen bestimmen, wie stark die Verbindung ist. Dies steuert, wie Erinnerungen abgespeichert werden.“

Außerdem sorgen die hemmenden Synapsen dafür, dass die Veränderungen der erregenden Synapsen über die Zeit stabil bleiben. Dadurch können wir neue Informationen schnell verarbeiten und bereits aus Erfahrungen, die wir zum ersten Mal machen, lernen.

Ganzheitlicher Blick auf Dynamik neuronaler Netzwerke

Die Feinabstimmung zwischen benachbarten Synapsen ist sowohl für schnelles Lernen wichtig als auch für die Schaffung bleibender Erinnerungen. „Wir haben in unserem Modell eine Vielzahl von Regeln in Bezug auf den gegenseitigen Einfluss der Synapsen berücksichtigt“, betont Agnes. „Damit erhalten wir eine ganzheitliche Sicht auf die Mechanismen, die der Gehirn-Plastizität zugrunde liegen. Die Studie verdeutlicht den Einfluss nachbarschaftlicher Beziehungen und gibt neue Einblicke in die Dynamik und Optimierung von neuronalen Netzwerken im Gehirn.

Originalpublikation

Everton J. Agnes and Tim P. Vogels. Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks. Nature Neuroscience (2024), doi: 10.1038/s41593-024-01597-4

Reference: Bunte Welt

AdBlocker active! Please take a moment ...

Our systems reports that you are using an active AdBlocker software, which blocks all page content to be loaded.

Fair is fair: Our industry partners provide a major input to the development of this news site with their advertisements. You will find a clear number of these ads at the homepage and on the single article pages.

Please put www.quintessence-publishing.com on your „adblocker whitelist“ or deactivate your ad blocker software. Thanks.

More news

  
17. May 2024

Wie Elternschaft das Gehirn verändert

Eltern haben stärkere neuronale Netzwerke, die auch mit erhöhter Wachsamkeit für Bedrohungen verbunden sind
8. May 2024

Acht neue „Klug entscheiden“-Empfehlungen in der Medizin

Initiative der Deutschen Gesellschaft für innere Medizin (DGIM) hilft, unnötige Prozeduren und Kosten zu vermeiden
7. May 2024

StIx Index 2023: Deutschland klettert auf den vierten Platz

Ein Vergleich, wie gut Staaten weltweit funktionieren, zeigt überraschend gute Ergebnisse für Deutschland
7. May 2024

Gesundheitsrisiken durch den Klimawandel

Ältere Menschen und Kleinkinder sind besonders gefährdet
7. May 2024

Jeder dritte kardiovaskuläre Todesfall geht auf falsche Ernährung zurück

Studie des Kompetenzclusters „nutriCARD“ über den Zusammenhang von Fehlernährung und Herz-Kreislauf-Erkrankungen
3. May 2024

Reiseversicherungen – welche sind notwendig?

Schutzengel für Reisen oder Unglücksbringer fürs Portemonnaie? Reiseversicherungen auf dem Prüfstand
2. May 2024

Kein Anspruch auf eine Schlussformel in einem Arbeitszeugnis

Grundrechte beider Parteien sind zu beachten – Interesse des Arbeitgebers ist höher zu bewerten
2. May 2024

2. Mai 2024: Ab heute verbraucht Deutschland mehr Ressourcen als nachwachsen

Erdüberlastungstag in Deutschland: Wenn alle so lebten wie wir, bräuchten wir drei Erden